Главная > Феймановские лекции по гравитации
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

3.4. Физическая интерпретация в терминах амплитуд

Поляризация гравитона есть тензорная величина. Мы можем наглядно представить это понятие с помощью картинок, подобных тем, которые мы использовали в описании давлений; мы рисуем стрелки, показывающие направление, которое ассоциировано с нормалью к поверхности, к осям координат.

В этой плоскости, перпендикулярной направлению распространения, мы имеем два давления, изображенные на рис. 3.3. Имеется только две возможности для квадрупольного давления; давления, представляемые стрелками, направленными к началу координат (или от начала координат), представляют собой тип давления в жидкости, которое соответствует спину, равному нулю. "Давления" (в действительности вращения), представляемые всеми стрелками, поворачивающимися в направлении по часовой стрелке (или против часовой стрелки), соответствует спину 1.

Давление, представленное на рис. 3.3(a), может относится к осям, которые повернуты на угол 45° от исходных осей координат; в этом случае картинка на рис. 3.4 есть ничто иное, как то же самое давление, изображенное на рис. 3.3(a), повернутое на угол 45°. Отсюда мы находим, что эти поляризации поворачиваются одна в другую при повороте осей на угол 45°. Если мы поворачиваем на угол 90°, то каждая поляризация переходит в себя; стрелки меняют свое направление, но мы должны думать об осциллирующей зависимости от времени, которая связана с этими поляризациями. Двигаясь этим путем, мы видим, что полное вращение на угол 360° соответствует двум полным циклам фазы - спин равен двум. Существуют две ортогональных линейных комбинации этих двух поляризаций, чьи изменения вращательной фазы ведут себя как . Это просто различное разделение "запаздывающего" члена; методом проб и ошибок мы можем просто представить эти две части

(3.4.1)

Эти части характеризуются спином 2, проекция ±2 тензоров очевидна, когда мы сравниваем форму этих произведений с произведением гармонических многочленов; мы знаем, что очевидно характеризуются спином 2 и проекцией ±2; эти произведения равны которые имеют ту же структуру, что и члены в соотношении (3.4.1). Таким образом, мы приходим к выводу, что при наши гравитоны имеют только две возможных поляризации. Эта возможно правильная теория, эквивалентная теории поля спина 2, которую ранее рассматривали теоретики Паули и Фирц и выразили на языке полевых лагранжианов [FiPa 39].

Мы подходим к теории со спином 2, исходя из аналогий с теорией со спином 1; таким образом мы без объяснений предполагаем существование гравитонных плоских волн; так как плоские волны фотона представляются полюсами пропагатора, и пропагатор гравитона также имеет полюсы .

Но соответствующие наблюдательные свидетельства отсутствуют; мы не наблюдали ни гравитонов; ни даже классических гравитационных волн.

Имеются некоторые проблемы, которыми мы пренебрегли полностью в настоящее время, но к которым мы вернемся позднее. Источники электромагнетизма сохраняются, и энергия также сохраняется, которая есть источник гравитации. Но это сохранение совершенно другого характера, так как фотон - незаряжен, следовательно, он не является источником самого себя, тогда как гравитон содержит энергию, равную , и следовательно, он сам является источником гравитонов. Мы говорим об этом, как о нелинейности гравитационного поля.

В электромагнетизме мы можем вывести полевые уравнения (уравнения Максвелла), которые несогласованы, если заряд не сохраняется. До сих пор мы избегали обсуждения полевого уравнения для гравитации, поскольку мы беспокоились только об амплитудах, но не о самих полях. Также нам необходимо уже обсудить, является ли теория, которую мы можем написать, зависимой от калибровки, и можем ли мы написать вообще полевое уравнение, соответствующее максвелловским уравнениям

Имеются некоторые физические свойства нашей теории, которые могут быть обсуждены без полевых уравнений, просто из рассмотрения формы взаимодействия. Запишем полное выражение, соответствующее

(Если потребуется, то член может заменяться на или на ). Мы уже обсудили запаздывающий член и его поляризации. Теперь проанализируем первый член. Тензор Т - тензор давления; для медленных частиц пространственные компоненты порядка так что ньютоновский закон представляется только одним своим произведением . Другие произведения представляют собой что-то подобное магнетизму. Заметим, что при таком разделении они появляются как члены, описывающие мгновенное взаимодействие.

Запаздывающие эффекты, движущиеся волны появляются только при четных степенях .

Мы можем думать, что члены, описывающие мгновенное взаимодействие типа магнитного, могли бы давать наблюдаемые эффекты, например, могло бы быть небольшое изменение в гравитационном взаимодействии между двумя колесами, если мы вращаем их все быстрее и быстрее. Рассматриваемая теория действительно предсказывает подобные эффекты, но практически подобные силы не только были бы очень, очень малы, но они также были бы скрыты множеством других эффектов. Магнитные силы, такие как притяжение между двумя проводящими ток проволочками, достаточно просто наблюдать только потому, что эффекты кулоновского взаимодействия взаимно уничтожаются очень, очень точно при наличии равных величин положительного и отрицательного зарядов. Но все гравитационные силы притягивающие, так что нет надежды на подобное взаимное уничтожение этих сил. Для вращающихся колес трудность была бы в том, что упругое давление вещества вносило бы добавку в члены, описывающие энергию взаимодействия, колеса бы управлялись слегка по разному и т.д. В добавление к этому, мы можем думать, что обычное гравитационное взаимодействие довольно трудно измерить, и что эффекты типа магнитных могут быть меньше на некоторое отношение такое, как отношение магнитных сил к кулоновским. Силы между проволочками, проводящими ток, порядка грамма веса, в то время как кулоновские взаимодействия между частицами в проволочках (в случае, если бы они взаимно не уничтожались) порядка миллиардов миллионов тонн.

Возможно пронаблюдать эффекты, обусловленные таким членом типа магнитного, если мы рассмотрим гравитационное взаимодействие частиц, движущихся со скоростью света или с близкой к ней скоростью. Предположим, что обусловлен стационарным источником, таким как Солнце, так что остается только компонент и мы рассмотрим гравитационное взаимодействие между Солнцем и быстрой частицей, которая движется со скоростью v, близкой к скорости света с, так что ее тензор давления имеет компоненты, такие как . Затем в соотношении (3.4.2) мы видим, что энергия взаимодействия больше, чем обусловленная только на множитель или на множитель 2 для фотона. Таким образом, так как фотон движется в сильном гравитационном поле, то он движется как частица, обладающая большей энергией, чем можно было бы предсказать, исходя из ньютоновской теории. Отклонение луча света звезды тогда, когда луч проходит вблизи поверхности Солнца, в два раза больше, чем величина, получаемая при анализе изменения импульса в рамках ньютоновской теории гравитации.

Земляне провели подобный эксперимент и обнаружили, что наблюдаемая величина угла отклонения больше, чем величина, получаемая в рамках ньютоновской теории, на множитель, который очень близок к 2. И хотя данный наблюдательный факт достаточно несовершенен и не во всем согласован, он предполагает действительный эффект в направлении, предсказываемом нашей теорией.

В этом месте мы могли бы приступить к вычислению в деталях таких эффектов, как и рассмотренный выше, а также многих других задач, таких как комптоновское рассеяние гравитонов, эффектов, связанных с движением Меркурия вокруг Солнца, для того, чтобы найти порядки величин гравитационных эффектов и определить, какие эксперименты могли бы быть возможными. Тем не менее, возможно предпочтительнее приступить к описанию самого гравитационного поля на языке полевого лагранжиана и полевых уравнений, чем на языке амплитуд.

1
Оглавление
email@scask.ru