Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
7.6. Кривизна в двух и четырех измеренияхИнвариантной величиной, которая характеризует геометрию способом, не зависящим от специального выбора системы координат, является кривизна. Очень просто представить себе смысл кривизны, когда мы рассматриваем двумерную поверхность: плоское неискривленное пространство, такое как плоскость, или искривленное пространство, такое как кривая поверхность. Хотя в нашей последующей работе нам понадобится работать с кривизной аналитически, сейчас следует немного поработать с двумерной геометрией, которую мы можем очень просто представить; определения кривизны в более высоких измерениях есть точные аналоги определения кривизны поверхности. В общем случае длина дуги на двумерной поверхности задается соотношением
Хотя очевидно, что три функции
Это означает, что для целей изучения геометрических измерений на двумерной поверхности наиболее общим выражением для длины дуги является следующее соотношение:
С одной точки зрения, функция f(x,y) представляет собой множитель, на который меняются линейки, когда мы движемся по поверхности. С другой точки зрения, она очевидно определяет кривизну пространства. Забавный пример физической ситуации, которая в точности соответствует этим геометриям, придуман одним из студентов Робертсона. Представим себе, что человек делает измерения с помощью линейки на раскаленной пластине, которая в некоторых местах горячее, чем в других. Линейка растягивается или сжимается в зависимости от того, где делаются измерения, в более горячих или более холодных областях на плоскости; очевидно, что соответствующая функция f(x,y) определяется локальной температурой и коэффициентом теплового расширения линейки. Локальная кривизна поверхности в точке может быть определена с помощью некоторого математического критерия, включающего в себя предельный случай измерений, проделываемых со все более и более маленькими объектами. Мы могли бы, например, выбрать для сравнения отношения длины окружности к радиусу, отношения площадей кругов к квадратам радиусов; для случая сферических поверхностей эти отношения отличаются от тех, которые получаются на плоской поверхности, на множители Мы можем легко рассмотреть другие кривые поверхности. Например, легко увидеть, что цилиндрическая поверхность имеет нулевую кривизну, так как цилиндрическая поверхность может быть развернута на плоскость без растяжения, очевидно, что отношение длины окружности к радиусу должно быть в точности равно Эти поверхности описываются двумя линейными параметрами, радиусами кривизны в двух перпендикулярных плоскостях. В этом случае внутренняя кривизна определяется соотношением Мы видим, что эта величина дает правильное значение кривизны для специальных случаев сферических поверхностей и цилиндрических поверхностей; для сферы оба радиуса равны; для цилиндра один радиус равен бесконечности. Кривизна четырехмерного пространства будет определяться аналогичным математическим критерием. Тем не менее, мы едва ли можем ожидать, что мы окажемся в состоянии мысленно построить такие простые картинки и мы должны будем полагаться главным образом на аналитические методы, поскольку наша интуиция вероятно будет нас обманывать. Очень трудно думать о четырехмерном пространстве специальной теории относительности, даже обладая хорошей интуицией, я считаю, что очень трудно наглядно представить то, что достаточно близко к нему, поскольку имеется знак минус в сигнатуре метрики. А представить себе такое пространство с кривизной было бы еще труднее. Кривую двумерную поверхность удобно представлять, как кривую поверхность, погруженную в трехмерное пространство. Но аналогичное описание для кривизны трехмерного пространства требует концептуального погружения в пространство с шестью измерениями, а проделывая эту процедуру для четырех измерений, мы должны думать о четырехмерном пространстве, которое погружено в десятимерный мир. Таким образом, кривизна пространства-времени значительно сложнее, чем кривизна поверхности.
|
1 |
Оглавление
|