Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
13.4. Принцип Маха и граничные условияКлассическая теория гравитации не приводит нас к ответу на вопрос о том, справедлив ли принцип Маха? Мы можем спросить, например, предсказывает ли теория гравитации силы Кориолиса, если в целом галактики обладают некоторым результирующим вращением вокруг нас.
Рис. 13.3. К этой задаче подходят следующим способом. Мы представляем себе находящуюся на большом расстоянии от нас вращающуюся оболочку, образованную веществом, как показано на рис. 13.3. Спросим себя, будут ли силы в центре так влиять на качающийся маятник, чтобы он следовал движению оболочки. Эта задача решается подстановкой в граничные условия
Величина При предыдущем обсуждении принципа Маха мы строили догадки о том, что возможно величина компонент ди в метрике
есть имеющая физическое значение величина, если мы измеряем собственное время в естественных единицах, таких как хаббловская величина
Рис. 13.4. Специальная теория относительности приходит на ум, если имеет место частный случай Ответы на все эти вопросы могут быть непростыми. Я знаю, что есть некоторые ученые, которые ходят вокруг того утверждения, что Природа всегда выбирает наипростейшие решения. Тем не менее, простейшее решение, намного превосходящее все остальные решения, было бы такое решение, где нет ничего, так что не было бы совсем ничего во вселенной. Природа много более изобретательна, чем такая картина, так что я отвергаю то, чтобы носиться с мыслью о том, что Природа всегда должна быть просто устроена.
|
1 |
Оглавление
|