Главная > Феймановские лекции по гравитации
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

7.4. Собственное время в общих координатах

Для того, чтобы получить формулу Эйнштейна для мы должны рассмотреть системы отсчета, которые не только ускоряются, но также находятся под действием сил, которые искажают их форму произвольным образом. Мы хотим получить общую формулу для координат, которая аналогична определению координатных систем, вращающихся друг относительно друга

(7.4.1)

Мы описываем ускорение общего вида и растяжение произвольного вида, устанавливая, как каждая из четырех координат одной системы зависит от всех координат другой системы

(7.4.2)

Рассмотрим вначале ситуацию, которая возникает, когда .

В этом случае мы знаем, что собственное время в нескрученной системе есть просто (здесь мы положим )

(7.4.3)

Для того, чтобы описать собственное время в штрихованных координатах, мы просто переписываем дифференциалы следующим образом:

(7.4.4)

Это определяет метрический тензор который содержит описание длины дуги в произвольным образом скрученной и ускоренной системе

(7.4.5)

Заметим, что представляет десять функций координат так как имеется десять билинейных произведений Метрический тензор - симметричен. Как только мы имеем эти десять функций точно определенными, то нахождение траекторий, для которых собственное время достигает максимума, должно будет представлять собой чисто математическое упражнение.

Что же происходит, когда гравитация не равна нулю? В простом случае, который мы рассматривали в предыдущем разделе, мы нашли, что собственное время задается чем-то вроде следующего соотношения

(7.4.6)

Это выражение только слегка отличается от случая, когда гравитационное поле равно нулю. Именно Эйнштейну принадлежала идея о том, что полное описание гравитации могло бы быть всегда определено метрическим тензором таким как

(7.4.7)

Случай нулевого поля соответствует частной простой форме для метрического тензора дар — . При изменении координатной системы новый метрический тензор задается соотношением:

Как и ранее, движение частиц задается требованием, чтобы собственное время достигало максимального значения на траектории движения. Если возможно, используя некоторый разумный способ выбора преобразований, привести тензор к виду тогда мы можем сделать заключение, что гравитационного поля нет и что также нет и ускорения.

Но это не может быть сделано в общем случае, так как общий тензор представляет десять предположительно независимых функций, и только четыре функции могут быть точно определены при преобразовании координат (7.4.2). Только при очень специфических условиях ускорения могут устранить все недиагональные члены всюду и привести этот тензор к виду . Если же на самом деле имеется некоторое вещество в окружающей среде, приведение этого тензора к виду невозможно. В этом случае все возможные тензоры связываемые соотношениями (7.4.8), будут эквивалентны, так как ни один из них не приводит к очень простым выражениям для

Каковы же наши успехи в изучении характера описания гравитационных сил? В ньютоновской теории соответствующее положение есть утверждение, что сила задается градиентом скалярной функции

Вторая часть теории соответствует точному определению того, как потенциалы связаны с веществом. В ньютоновской теории мы имеем

(7.4.10)

В конце концов мы придем к точному определению тензора двыраженному через характеристики вещества. Основная идея состоит в том, что поскольку материя есть физическая категория, в то время как системы координат нет, вещество должно быть описано таким образом, чтобы результаты решения уравнения движения не зависели от какого-либо специального выбора системы координат, тем самым ожидается, что имеющие физический смысл свойства тензора должны быть инвариантными величинами при произвольных преобразованиях.

1
Оглавление
email@scask.ru