Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Лекция 77.1. Принцип эквивалентностиВ наших нынешних планах будет описание относительности и гравитации с точки зрения, которая в большей степени находится в согласии с подходом Эйнштейна. Мы надеемся, что, рассматривая теорию с различных выгодных точек зрения, мы лучше поймем теорию в целом. Теория гравитации, как она рассматривалась в рамках идей Эйнштейна, есть нечто настолько удивительно волнующее, что мы будем испытывать искушение попытаться сделать тале, чтобы все остальные поля выглядели как гравитация, что является пожалуй предпочтительнее, чем продолжать исследование гравитации с венерианского направления, делающего гравитацию похожей на другие поля, которые нам привычны. Мы будем сопротивляться этому искушению. Истоки подхода Эйнштейна должны быть найдены в физике, известной во время создания им теории гравитации, в электродинамике и ньютоновской механике. Чувствуется, что идея, преобладающая в мыслях Эйнштейна во время создания им его теорий, заключалась в том, что все разделы физики должны были бы быть согласованы; он нашел путь, чтобы уладить лоренц-инвариантность классической электродинамики с видимой галилеевой инвариантностью ньютоновской механики, и много новых физических результатов было достигнуто после этого. Аналогично, именно загадочный феномен гравитации привел Эйнштейна к теории гравитации, когда он преобразовал этот феномен в физический принцип. Центральная идея гравитации, наиболее убедительный факт о том, как она действует, состоит в том, что вес и масса в точности пропорциональны, так что все объекты ускоряются гравитацией в точности с одной и той же скоростью независимо от состава вещества, из которого состоят эти тела. Эксперимент Этвеша показал, как центробежная сила добавляется к гравитационной силе так, что результат неотличим от чисто гравитационного эффекта. Возможно такие эксперименты навели Эйнштейна на мысль о том, что может быть такой физический принцип, который заставляет ускорения имитировать гравитацию во всех отношениях. Совершенно очевидно, что механические эксперименты, проводимые внутри ускоряющегося ящика, дают результаты, которые неотличимы от результатов, которые могли бы быть получены в том случае, если ящик находился в покое, но имелось бы гравитационного поле.
Рис. 7.1. Во времена Эйнштейна не было прямых проверок этого факта, но теперь нам хорошо знакома невесомость в спутниках, которая возникает вследствие того, что гравитационная сила и центробежная оказываются одинаковыми по абсолютной величине и противоположными по знаку. Возможность возникновения подобного рода невесомости есть суть принципа эквивалентности. Перед тем, как мы извлечем полезную физику из этой идеи, мы должны иметь утверждение, которое является более точным и которое включает в себя определенные измеряемые величины. Более точное утверждение, которое имело бы смысл в рамках ньютоновской механики, могло бы включать в себя силы, действующие на стационарные объекты. Если мы осуществляем движение ящика с постоянным ускорением Это утверждение принципа эквивалентности является более физическим, но мы пока говорим на элементарном уровне без определения природы сил более точно. Возможно ли сделать физически значимые утверждения без определения природы сил? Мы можем напомнить ситуацию в механике Ньютона. Часто говорится, что второй закон Ньютона
есть просто определение сил, так что этот закон не несет в себе никакой реальной физики, поскольку содержит в себе рассуждение, проводимое по логическому кругу. Но очевидно, что теория Ньютона целиком не является логическим кругом, так как она правильно предсказывает орбиты Луны и планет. Что Ньютон имел в виду, говоря нам, что мы должны вычислять силы в соответствии с (7.1.1), было то, что если существует ускорение, мы должны оглядеться по сторонам в поисках какой-либо физической причины, которая вызывает такую силу. Будущее физики лежит в нахождении того, как окружение объекта связано с силами, которые мы подставляем в левую часть уравнения (7.1.1) так, чтобы соответствовать наблюдаемым ускорениям. Когда Ньютон приходит к своему третьему закону
он делает физическое утверждение, так как он приводит детальные характеристики связи между силами и физическими объектами. Ньютоновский закон гравитации есть другая детальная характеристика того, как окружение объекта связывается с его ускорениями. Второй закон Ньютона задается в духе ”cherchez la femme”: Если мы видим силу, то мы должны искать "виновный" объект, который вызывает эту силу. Аналогичным способом наша простая формулировка принципа эквивалентности дает физическое утверждение о том, как окружение влияет на тела; оно не зависит от правильности второго закона Ньютона (7.1.1). Окружение в этом случае состоит из масс, которые образуют гравитационные поля, или внешние силы создают ускорения. Невозможно полностью исключить гравитационные эффекты однородными ускорениями. Представим себе ящик на орбите земли, т.е. спутник. Так как гравитационное поле не является однородным, имеется только одна точка вблизи центра масс спутника, где гравитационные эффекты в точности скомпенсированы ускорением. Если мы удаляемся достаточно далеко от центра масс, гравитационное поле Земли меняет или свою величину, или направление, так что будут существовать малые нескомпенсированные компоненты гравитационных сил. Если ящик не очень велик, эти дополнительные силы очень близки к пропорциональности расстоянию от центра этого ящика и имеют квадрупольный характер, как показано на рис. 7.2 (a).
Рис. 7.2. Силы, подобные этим, вызывают приливы на Земле, так что мы можем называть их приливными силами. Мы можем рассмотреть также ящик, который помещен в подобное неоднородное поле, но не ускоряется, как показано на рис. 7.2(б). Принцип эквивалентности говорит нам теперь, что мы можем создать ситуацию, физически неотличимую от той, которая происходит внутри спутника, если мы поместим большие массы достаточно далеко, так что мы накладываем однородное поле, которое в точности компенсирует гравитацию в центре ящика. Попробуем посмотреть, как мы могли бы сделать еще лучшее утверждение эквивалентности: одно гравитационное поле внутри ускоряемого ящика эквивалентно другому гравитационному полю и другому ускорению ящика. Мы можем исключить гравитацию в любой отдельной точке и в любой отдельный момент времени; в некоторой малой области, окружающей данную точку, остаточные отличия должны быть пропорциональны расстоянию от точки, где ускорения скомпенсированы. Становится очевидным, что при создании нашей теории мы будем рассматривать преобразования, которые можем символически записать как
Вследствие этой возможности, мы не будем способны сказать в любом абсолютном смысле, что один эффект является гравитационным или вызывается силами инерции; невозможно определить "истинную" гравитацию, так как мы не можем даже точно определить, какая часть наблюдаемой силы вызывается гравитацией и какая обусловлена действием сил инерции. Оказывается верным то, что мы не можем имитировать гравитацию ускорениями всюду, что проявляется в том случае, когда мы рассматриваем ящики больших размеров. Тем не менее, рассматривая преобразования (7.1.3) в инфинитезимальных областях, мы надеемся узнать, как описать эту ситуацию в дифференциальном виде; только затем мы будем беспокоиться о граничных условиях или описании гравитации в больших областях пространства. В специальной теории относительности проводится интенсивное использование инерциальных систем отсчета, которые движутся друг относительно друга с постоянной скоростью и прямолинейно. Но, как только мы допускаем существование гравитирующих масс всюду во Вселенной, концепция такого истинного неускоренного движения становится невозможной, поскольку всюду будут гравитационные поля. Если мы проводим эксперименты внутри ящика, который не находится в свободном падении, то будет возможно определить наличие сил типа гравитации, например, экспериментами с применением пружин. Тем не менее, мы не можем сказать, находясь внутри ящика, ускоряемся ли мы относительно "туманности", или эти силы обусловлены массами, находящимися в окрестности ящика. Именно этот характерный факт о гравитационных силах дает намек на постулат, который в конце концов приводит нас к полной теории. Мы постулируем: будет невозможно посредством какого бы то ни было эксперимента, проводимого внутри такого ящика, детектировать различие между ускорением относительно "туманности" и гравитацией. Таким образом, ускоряющийся ящик в некотором гравитационном поле неотличим от покоящегося ящика в некотором другом гравитационном поле, если наблюдатель находится внутри ящика. Это звучит так похоже на рассуждения Эйнштейна, так напоминает его постулат специальной теории относительности! Мы знаем, что принцип эквивалентности работает для пружин (как мы знали, что специальная теория относительности работает для электродинамики) и мы распространяем его по соглашению на какие бы то ни было эксперименты. Мы привыкли использовать такие процедуры к настоящему времени, но каким удивительным являлся этот принцип в 1911 году - таким удивительным человеком был Эйнштейн.
|
1 |
Оглавление
|