Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
1.2. Характеристики феномена гравитацииРассмотрим некоторые экспериментальные факты, которые венерианский теоретик должен был бы обсудить при создании теории, объясняющей этот новый замечательный эксперимент. Прежде всего фактом является то, что сила притяжения определяется законом обратных квадратов расстояний. Что касается наших знаний об этом законе, то он известен очень-очень точно на основании изучения орбит планет. Кроме того, мы знаем, что сила пропорциональна массам объектов. Этот факт был известен Галилео Галилею, который обнаружил, что все тела падают с одинаковым ускорением. Насколько хорошо нам это известно? В принципе, что надо делать, абсолютно ясно; сначала мы определяем массу как инерцию данного объекта, которую мы измеряем, прикладывая к ней известные силы и измеряя ускорения. Затем мы измеряем притяжение, обусловленное гравитацией, например взвешиванием, и затем сравниваем результаты. Такие эксперименты, измеряющие силы и ускорения, должны были бы быть очень трудными для их проведения с достаточной точностью, однако имеются другие пути проверки закона Галилея с точностью до Если же сделать гирю отвеса из некоторого другого материала, который имеет другое отношение инерциальной и гравитационной массы, то отвес мог бы отклониться на несколько отличный от первоначального угол. Мы можем, таким образом, сравнивать различные вещества; например, если сделать первую гирю из меди, а вторую из водорода (конечно, может оказаться трудным изготовить гирю из чистого водорода, однако без труда ее можно было бы изготовить из полиэтилена), мы можем проверить постоянство инерциальной и гравитационной массы. В реальном эксперименте не измеряются разности столь малых углов, а измеряются вращающие моменты; такие малые вращающие моменты являются более удобными для измерений потому, что кварцевые нити обладают для этого весьма подходящими свойствами, являясь достаточно тонкими и в то же время способными выдерживать достаточно большую нагрузку. Как это обычно делается, два тела, сделанные из двух различных материалов, подвешиваются на концах стержня, а стержень подвешивается в своей средней точке; если компоненты сил, перпендикулярные гравитационным силам, не равны, то имеется некоторый результирующий вращающий момент, который может быть измерен. Опубликованные результаты недавнего эксперимента Дикке показали, что эффекта нет, и сделан вывод, что отношение инерциальной массы к гравитационной является константой с точностью Подобный эксперимент может быть проведен путем сравнения гравитационной силы, обусловленной влиянием Солнца, с инерциальными силами, связанными с нашим орбитальным движением вокруг Солнца. Находясь на Земле, мы вовлечены во вращение в пространстве с фантастической скоростью вдоль орбиты Земли, и единственная причина не замечать этого движения состоит в том, что все другие объекты, нас окружающие, также движутся по той же орбите; если бы гравитационное притяжение не было бы в точности то же самое для различных объектов, то эти объекты должны были бы стремиться к тому, чтобы иметь различные орбиты, и существовали бы эффекты, которые были бы связаны с этими различиями. Общий эффект выглядел бы как наличие небольшой силы в направлении Солнца. Такой эффект искался через попытки обнаружения некоторой суточной осцилляции, которая могла бы быть найдена по поведению баланса закручивающего момента для пары масс в ночное и дневное время. Естественно отличия были измерены, некоторые из этих отличий были обусловлены тем, что различные стороны здания имеют различные температуры - трудность проведения таких экспериментов с очень маленькими эффектами заключается в том, что необходимо быть уверенными, что измеряется на самом деле то, о чем идет речь, а не что-либо иное. Тем не менее, можно сделать заключение из этих экспериментов, что все объекты также хорошо сбалансированы на своих орбитах, как и Земля, с точностью С такой же точностью у нас есть также проверка гравитационного поведения антиматерии. Поразительное сходство электрических и гравитационных сил, заключающееся в зависимости от расстояний по закону обратных квадратов, заставило некоторых ученых придти к заключению, что было бы замечательно, если бы антиматерия отталкивала материю; они говорят, что поскольку в электричестве тела с одинаковым зарядом отталкиваются, а противоположные притягиваются, то было бы замечательно, если бы в гравитации похожие тела притягивались, а непохожие отталкивались; и единственный кандидат для гравитационной "непохожести" - антиматерия. Но с точностью Другой аргумент следует из того факта, что свет "падает" в гравитационном поле в соответствии с соотношениями, которые определяются нашей теорией; свет отклоняется Солнцем на измеряемую величину, которая будет вычислена в дальнейшем. Но фотон является своей собственной античастицей, так что мы должны заключить, что и частицы, и античастицы в этом случае ведут себя одинаково с точки зрения гравитации. Может быть забавным упражнением для некоторых людей попытаться построить теорию, в которой фотоны, исходящие из электрона, отличаются от фотонов, исходящих от позитронов. Но так как нет абсолютно никаких свидетельств того, что такая теория необходима для объяснения какого-либо явления, то довольно мало смысла заключено в попытке создания подобной теории; она должна была бы объяснять все известные эффекты также хорошо, как и существующая теория, и очень вероятно, что можно будет показать, что новая теория неверна, поскольку некоторые новые эффекты, предсказываемые новой теорией, не будут обнаружены при экспериментах. Наиболее прямое свидетельство того, что материя и антиматерия действительно ведут себя идентично по отношению к гравитационным эффектам, приходит из экспериментов по распаду Предположим, что гравитация действует на
Амплитуды для распада по этим модам интерферируют, эксперимент обнаружил эту интерференцию и установил значение Если мы рассмотрим гравитационный потенциал не Земли, а Солнца, который больше Земного, или рассмотрим даже Галактический потенциал, то получим все более и более лучшие пределы на степень того, насколько гравитационное взаимодействие должно быть одинаковым для материи и антиматерии. Однако подобная аргументация может быть отвергнута теми, кто считает, что антиматерия отталкивается, но для этого ими должно быть признано, что Известно также, что одиночные свободные нейтроны падают в гравитационном поле так, как это ожидается. Этот факт известен с превосходной точностью, поскольку он должен учитываться при создании нейтронных интерферометров; медленные нейтроны из реактора могут коллимироваться в узкие пучки и детектироваться на некотором расстоянии от него, которое порядка нескольких сотен футов. Обнаружено, что они падают в гравитационном потенциале Земли так же, как и любые другие частицы, которые мы можем измерить. Резюмируя вышесказанное, можно утверждать, что первый изумительный факт, связанный с гравитацией, заключается в том, что отношение инерциальной и гравитационной массы постоянно, где бы мы его ни проверяли. Второй изумительный факт, связанный с гравитацией, заключается в том, что это взаимодействие очень слабое. Сила гравитационного взаимодействия настолько слаба, что если венериане называют взаимодействия при
Другими словами, сила гравитации действительно слаба. Подобное сравнение на языке отношения сил является более значимым, чем обычное сравнение на языке констант взаимодействия; например, часто говорят, что электромагнитные силы являются "слабыми", потому, что величина Все другие поля, которые нам известны, являются много более сильными, чем гравитация, что приводит к тому предположению, что гравитация никогда не может быть объяснена как некоторая поправка, как некоторые члены, которыми ранее пренебрегали в теории, которая бы объединяла все другие поля, которые нам известны. Число 1042 так чрезвычайно велико, что появляется весьма заманчивая перспектива поискать другие большие числа, которые могут быть связаны с этим числом. Подобная идея первоначально была предложена А. Эддингтоном [Eddi 31, Eddi 36, Eddi 46]. Существование одного большого числа весьма загадочно, в случае существования двух таких чисел ситуация была бы еще хуже, и ситуация могла бы быть улучшена для нас, если бы эти числа были связаны так, что большая величина одного приводила бы к большой величине другого; существование же одной большой величины могло бы быть объяснено значительно более просто, чем двух больших чисел. Эддингтон предположил, что Мы знаем о других таких больших числах, например числе атомов или частиц в нас, но как и ранее, нам бы хотелось уйти от нашей человеческой природы при проведении подобных сравнений. Интересно, что гравитационные силы играют определяющую роль для движения таких огромных объектов, как галактики, так что можно было бы поискать связь между величиной гравитационных сил и размером вселенной. В настоящее время размер вселенной очень большой, и ее границы нельзя считать хорошо известными, однако можно определить некоторую величину, которая называется радиусом вселенной. Существует наблюдательный факт, что свет, приходящий от удаленных звезд и галактик, сдвигается в сторону более низких частот, как будто они разбегаются от нас со скоростями, пропорциональными расстояниям от нас до этих объектов. Этот факт может быть объяснен в рамках так называемой теории Большого Взрыва Вселенной. Как мы увидим, теория гравитации очень важна при рассмотрении космологических моделей, и мы будем обсуждать их позднее в нашем курсе. Однако сейчас предположим, что галактики образованы из материи, которая начала двигаться из некоторого пятна в Большом Взрыве; тогда пропорциональность между скоростью от центра и расстоянием получается довольно естественно, поскольку вещество, которое находится дальше, движется быстрее. Такая пропорциональность имеет вид Эта константа описывает время жизни вселенной; не обязательно мы должны верить в то, что вселенная образовалась Т лет назад, скорее эта величина характеризует фундаментальную размерность вселенной, причем значительно в большей степени, чем величина Эти времена равны соответственно Можно было бы попытаться опровергнуть идею об изменении гравитационной постоянной G, основываясь на следствиях теории звезд; мы не будем детально изучать звезды, однако вкратце можно сказать, какие процессы в них происходят. Вещество звезды падает к центру, выделяемая гравитационная энергия нагревает вещество до температуры, при которой происходят ядерные реакции, а в результате давление сохраняет звезду в состоянии равновесия, энергетические потери компенсируются энерговыделением при ядерных реакциях, и давление не позволяет веществу коллапсировать дальше. Если мы предполагаем, что гравитационная константа зависит от времени и имела большее значение в прошлом, мы должны предположить, что скорость энерговыделения в прошлом была выше для того, чтобы компенсировать больший вес; детальное рассмотрение показывает, что мы могли бы ожидать, что светимость звезды зависит от гравитационной постоянной как Теперь можно спросить геофизиков и биохимиков, что было бы, если бы температура Земной поверхности была бы такая, как 75° С. Эта температура еще не достаточно высока, чтобы моря закипели, так что мы еще не можем отвергнуть полностью такую теорию. Можно предположить, что жизнь действительно зародилась при такой температуре воды. Известны некоторые места на Земле, такие как горячие источники в Йеллоустоне, где некоторые бактерии живут в воде при аналогичных температурах. Это была бы довольно странная жизнь, которая могла бы существовать при таких температурах; найденные древнейшие ископаемые остатки не демонстрируют никаких особенностей, которые могли бы быть разумным свидетельством существования таких больших температур, тем не менее, насколько я знаю, мы не можем предъявить решающего свидетельства против более высокой температуры в более ранние времена. Существенно большая светимость звезд в том случае, если бы гравитационная постоянная была больше в прошлом, поменяла бы эволюционные масштабы времени некоторых звезд. Я знаю, что некоторые астрономы пытаются увидеть, согласуются ли эти выводы с наблюдениями, но я не знаю, получили ли они на этот счет строгое заключение. Другое замечательное совпадение, связывающее гравитационную константу с размером вселенной, получается из рассмотрения полной энергии. Полная гравитационная энергия всех частиц вселенной есть что-то вроде GMM/R, где R = Тс и Т - хаббловское время. На самом деле, если вселенная является сферой с постоянной плотностью, необходимо учесть множитель 3/5, но мы будем пренебрегать им, поскольку наша космологическая модель не во всем хорошо известна. Мы сравним эту величину с общей массой вселенной, В этих оценках именно плотность вселенной является наиболее трудным для определения параметром. Мы можем видеть звезды и галактики, видеть их достаточно много, но не иметь ясной идеи о том, насколько много темных звезд находится там, звезд, в которых перестали идти реакции ядерного горения. Не знаем мы и плотность межзвездного газа. У нас имеются некоторые мысли о том, как оценить плотность натрия в пространстве между галактиками, основываясь на измерении поглощения излучения в линиях D, испускаемого удаленными звездами. Однако натрий возможно составляет лишь небольшую часть общей массы, и нам необходимо знать плотность водорода. Путем изучения движения спиральных рукавов галактик, шаровых скоплений, выясняется, что галактики имеют в своих центрах большое количество скрытой массы. Все это не позволяет получить надежную оценку средней плотности во вселенной. А. Эддингтон для своих оценок в 20-х годах использовал значение 1 атом водорода в см3 для галактик. Радиоастрономы, которые недавно изучили Галактику в "свете водорода", привели несколько меньшую оценку, скажем 0,7 атома водорода в см3. Нет никаких достоверных данных о плотности межгалактического вещества; космологи предполагают величины в Все приведенные выше размышления о возможных связях между размером вселенной, количеством частиц и гравитацией не оригинальны и обсуждались ранее. Ученые, обсуждавшие подобные предположения, делятся на два типа: или это очень серьезные математики, играющие в игры, заключающиеся в построении математических моделей, или скорее всего шутники, забавляющиеся тем, что обращают внимание на некие забавные численные курьезы со смутной надеждой на то, что все это возможно когда-нибудь и будет иметь какой-то смысл.
|
1 |
Оглавление
|