Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
16.5. Источники классических гравитационных волнТеперь мы переходим к описанию классического гравитационного излучения. Так же, как в квантово-механическом случае, мы найдем, что излучателем гравитационных волн также является давление. Исходная точка в нашем обсуждении есть дифференциальное уравнение
Это решение продолжается в точности также, как и в электродинамике, для решений векторных потенциалов, создаваемых произвольными токами. Если мы предполагаем гармоническое изменение от времени, такое как
где индексы 1 и 2 относятся к различным пространственным положениям; (1) есть место, в котором мы вычисляем потенциалы (2) есть места, где находятся токи, и
Эта ситуация в точности аналогична той, которая имеет место в гравитации. Временные части полей
Рис. 16.7. Для того, чтобы вычислить такие величины, как мощность излучаемых гравитационных волн, мы рассмотрим точку (1), расположенную достаточно далеко от системы, на некотором расстоянии, которое много больше, чем размеры области, где, как ожидается, величина
когда
Интеграл, появляющийся в соотношении (16.5.6), теперь не зависит от точки (1), мы видим, что тензор давления 2) является источником сферических волн. В случае электромагнетизма наипростейшие случаи излучения часто соответствуют дипольному приближению, которое представляет собой первый ненулевой член в последовательности интегралов, соответствующих разложению экспоненты. Поскольку источник гравитационных волн является тензором вместо того, чтобы быть вектором (как в случае электромагнетизма), первый ненулевой член в гравитации имеет квадрупольный характер. Использование этого разложения оказывается оправданным, если частоты такие, что Таким образом, почти во всех случаях, представляющих астрономический интерес, длины волн много больше, чем размеры объекта. Результат состоит в том, что поля пропорциональны интегралам поперечных давлений (полное поперечное давление)
Значения давления в направлении вдоль волнового вектора не относятся к делу. Любое качественное правило, которое полезно в электромагнетизме, целиком переносится в гравитацию. Какова мощность, испускаемая такой волной? Существует огромное количество специалистов, которые в силу многолетнего предрассудка, что гравитация является чем-то таинственным и отличным от всего остального, напрасно обеспокоены этим вопросом; они считают, что гравитационные волны не переносят энергии совсем. Мы можем определенно показать, что гравитационные волны могут на самом деле нагреть стенку, так что нет вопроса об энергосодержании в гравитационных волнах. Эта ситуация в точности аналогична той, которая имеет место в электромагнетизме, и в квантовой интерпретации каждый испускаемый гравитон уносит величину энергии
|
1 |
Оглавление
|