Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
5.5. Собственная энергия гравитационного поляВернемся к менее спекулятивной и более точной материи. При развитии и проведении модификаций нашей полевой теории мы пренебрегали тем, чтобы проверить, является ли наша теория внутренне непротиворечивой. Мы написали полный лагранжиан, имеющий полевой член, член, описывающий материю, и член, характеризующий взаимодействие. Мы получили полевое уравнение, используя условие, что дивергенция тензора энергии-импульса должна быть равна нулю. Такая процедура очевидно некорректна, так как мы написали тензор давления, который не включал в себя энергию самого гравитационного поля. Таким образом, наша нынешняя теория не выдерживает критики с точки зрения физики, так как энергия вещества не сохраняется. Мы попробуем исправить этот теоретический недостаток путем поиска нового тензора, который складывается со старым тензором
и в то же самое время полная энергия поля правильно учтена. Как мы найдем этот член? Мы могли бы попытаться построить правильный полный тензор, используя формулу Вентцеля и полный лагранжиан. Результат дает несимметричный тензор, если мы проведем его симметризацию, проведем также вычисления, то оказывается, что выражение для прецессии перигелия Меркурия получается неверным. Это другой пример эмпирического определения физических теорий: теории, не возникающие из некоторого рода вариационного принципа, такого как принцип минимального действия, могут в конечном счете приводить к волнениям и противоречиям. Сделаем попытку другого рода согласно общей линии нашего построения, заключающегося в испытаниях различных теорий в последовательном порядке увеличения сложности. Физически мы знаем, что мы пытаемся описать нелинейный эффект: гравитационное поле образовано энергией, энергия этого поля есть источник других полей. Здесь мы можем приступить к получению важного результата. Конечно возможно, что такая нелинейность может приниматься в расчет для малого остаточного отличия в прецессии перигелия Меркурия. Мы будем требовать, чтобы полевые уравнения получались из вариации некоторого действия, и будем задавать себе вопрос о том, какого вида член должен быть добавлен к лагранжиану для того, чтобы получить член, похожий на член чтобы придти к уравнению движения
и такого, что соотношение (5.5.1) оказывается выполненным? Как может выглядеть выражение Мы будем требовать, чтобы наши уравнения были выводимы из вариационного принципа такого, как наименьшее действие. Когда мы вариируем эти произведения, мы уменьшаем число компонент h, так что для лагранжиана, который используется для вычисления вариации действия, требуется связывающий член третьего порядка по который будем называть
Алгебраическое выражение
Когда мы записываем все возможные такие произведения, мы находим, что их 24. Мы могли бы в дальнейшем уменьшить это число, замечая, что некоторые члены могут быть сведены к комбинациям других интегрированием дважды по частям, эти соображения приводят нас к тому, чтобы записать 18 различных и независимых выражений. Следовательно, мы приходим к выражению для Дальнейшая процедура очевидна. Мы пытаемся определить константы, исходя их условия, что
Эти условия дают множество более, чем 18 уравнений для 18 констант. Тем не менее, оказывается, что все уравнения совместны и 18 констант определяются однозначно. Когда мы сделаем это, у нас будет уточненная теория, которая правильно учитывает энергию самого гравитационного поля во втором порядке по
|
1 |
Оглавление
|