Главная > Феймановские лекции по гравитации
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

8.7. Свойства Великого Тензора Кривизны

Хотя величины не являются инвариантами, они образуют тензор, как можно было бы заключить из закона преобразования (8.6.17). Легко можно показать, что тензор определяется только двадцатью величинами, как мы ранее и утверждали.

Выражения (8.5.9) были получены путем антисимметризации по индексам и впоследствии по . Имеются следующие симметрии для компонент тензора:

(8.7.1)

Следующее алгебраическое соотношение содержится неявно в соотношении (8.5.9) (и, следовательно, в соотношении (8.6.16)):

Давайте посчитаем число независимых компонент тензора кривизны. Первый индекс может не быть равным второму, третий не может быть равным четвертому. Только антисимметричные комбинации могут быть не равны нулю - мы напоминаем, что имеется шесть возможно ненулевых компонент для антисимметричного тензора второго ранга, так что за исключением симметрии, связанной с перестановкой первой пары и второй пары, здесь имелось бы 36 компонентов; последняя же симметрия (8.7.1в) уменьшает это число до . Алгебраическое соотношение, определяемое (8.7.2), содержит только одно нетривиальное ограничение. Если два индекса являются одинаковыми, то соотношение (8.7.2) является тождеством, поскольку имеются симметрии в соотношениях (8.7.1). Например,

(8.7.3)

Так что все индексы должны быть различными для того, чтобы это алгебраическое соотношение имело смысл. Но когда все индексы различны (1,2,3,4), то имеется только одно дополнительное уравнение. Итак, в общем случае имеется только двадцать независимых компонент Великого Тензора Кривизны (Тензора Римана).

То, в чем мы нуждаемся для построения нашей теории, это не тензор, а полностью инвариантная величина, которая может быть подставлена в лагранжиан. (Вместо этого, Эйнштейн говорил, что Тензор Энергии-Импульса равен другому тензору, которые получается из тензора кривизны.) Принцип наименьшего действия должен включать в себя интеграл по всему пространству, который должен быть полностью инвариантным под действием преобразований. Подынтегральное выражение должно быть мировой скалярной величиной

(8.7.4)

Мы получим такой скаляр, поднимая индексы тензора кривизны и свертывая по парам верхних и нижних индексов. Мы можем, например, поднять первый индекс

(8.7.5)

Но если в этом месте мы проведем свертывание по первой паре индексов, то эта величина, к сожалению, обращается в нуль

(8.7.6)

То, что необходимо сделать сначала, состоит в уменьшении ранга тензора и свертывании по первому и последнему индексам

(8.7.7)

(Заметим, что одну и ту же букву R удобно использовать для всех тензоров, получаемых из тензора кривизны.) Этот тензор второго ранга (тензор Риччи) - симметричен. Затем мы вновь уменьшаем ранг тензора для того, чтобы получить нашу скалярную величину ("скалярную кривизну") для подынтегрального выражения

(8.7.8)

Теперь интеграл по объему от этого скаляра не является инвариантом, поскольку элемент объема не является скаляром; величина меняется при изменении координат, причем это изменение определяется определителем матрицы . Таким образом, интеграл от инварианта есть

(8.7.9)

Это выражение определяет действие Эйнштейна—Гильберта для пустого пространства [Hilb 15].

1
Оглавление
email@scask.ru