Главная > Теория потенциальной помехоустойчивости
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

4-6. ПОМЕХОУСТОЙЧИВОСТЬ ПРИ КЛАССИЧЕСКОМ ТЕЛЕГРАФНОМ СИГНАЛЕ И ПРИЕМЕ С ОБЫЧНЫМ ДЕТЕКТОРОМ

Рассмотрим теперь вероятность искажения в случае, когда в приемнике, разобранном в предыдущем параграфе, вместо синхронного детектора применяется обычный. В этом случае выпрямленное напряжение будет зависеть от амплитуды суммарного колебания, состоящего из сигнала и помехи на выходе фильтра.

Пусть приемник воспроизводит первое сообщение, если эта амплитуда на выходе фильтра будет в момент времени больше половины амплитуды от сигнала, т. е.

и воспроизводит второе сообщение, если это неравенство не удовлетворяется.

Райе 1 высчитал вероятность того, что суммарная амплитуда синусоидального сигнала и флюктуационной помехи будет меньше некоторой величины. Воспользовавшись его результатами, которые даны им в виде кривых, можно вычислить

значение вероятности того, что суммарная амплитуда сигнала и помехи в момент времени у окажется меньше произойдет искажение. Назовем эту вероятность вместо Затем можно найти вероятность того, что амплитуда помехи в отсутствие колебания сигнала превзойдет величину сигнал будет воспринят, как сигнал Эта вероятность была определена многими авторами и в том числе Райсом.

Фиг. 4-4. Вероятность искажения при сигнале с прямоугольной огибающей. Кривая 1 — идеальный приемник; 2 — синхронный приемник; обычный приемник; определяется формулой (4-15).

Фиг. 4-5 Коэффициент использования мощности при сигнале с прямоугольной формой. Кривая 1 — обычный приемник; прямая 2 — синхронный приемник.

Она равна:

где эффективное значение помехи, равное в соответствии с (2-57) в нашем случае величине а Подставляя это значение и значение в (4-34), получим:

где определяется выражением (4-25).

Если принять, что посылка сигналов равновероятна, то вероятность искажения будет равна:

Эта вероятность для оптимальной полосы, которая в данном случае будет также определяться уравнением (4-30), изображается кривой 3 на фиг. 4-4. Там же для сравнения кривая 2 изображает вероятность искажения для случая приема

с синхронным детектором и кривая 1 — для случая идеального приемника.

По оси абсцисс во всех случаях отложена величина где - удельная энергия, даваемая формулой (4-15).

Кривая 1 на фиг. 4-5 дает коэффициент использования мощности при приеме, разобранном в этом параграфе, в зависимости от . В данном случае он будет равен квадрату отношения абсцисс кривых 1 и 3 на фиг. 4-4, взятых при данном На этой фигуре прямая 2 дает для сравнения величину коэффициента использования мощности при приеме с синхронным детектором, которая равна 0,83.

Categories

1
Оглавление
email@scask.ru