Главная > Элементарная математика с точки зрения высшей, Т.1. Арифметика. Алгебра. Анализ
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

8. Сведение общих уравнений к нормальным

Можно сказать, что самое общее уравнение: третьей степени сводится к уравнению диэдра при четвертой степени сводится к уравнению тетраэдра или октаэдра, пятой степени сводится к уравнению икосаэдра. Этот результат представляет собой самый последний триумф правильных тел, которым с самого начала истории математики все время приходилось играть важную роль.

Чтобы сделать для вас понятнее смысл моего общего утверждения, я приведу его несколько подробнее для простейшего случая — для уравнения третьей степени, — впрочем, без полного доказательства формул. Представим себе кубическое уравнение снова в приведенной форме:

Пусть — его корни; станем искать такую рациональную функцию этих корней, которая при 6 перестановках этих трех величин описывает как раз 6 линейных подстановок диэдра для т. е. принимает значения

Легко видеть, что функция

удовлетворяет этим условиям. Принадлежащая диэдру функция этой величины должна, таким образом, оставаться неизменной при всех перестановках так как она остается без изменений при 6 линейных подстановках ;

следовательно, на основании известной теоремы алгебры ее можно представить в виде рациональной функции коэффициентов уравнения именно, вычисление дает

Если же, наоборот, известно решение этого уравнения диэдра и z — один из его корней, то можно по выражению (2) с помощью известных соотношений

выразить рационально три значения через , а именно, оказывается, что

Таким образом, если решено уравнение диэдра (3), то эти формулы непосредственно дают решение кубического уравнения (1).

Совершенно аналогично получается сведение наиболее общего уравнения четвертой и пятой степени. Уравнения оказываются, конечно, несколько длиннее, но в сущности не более трудными; новым является то, что параметр w нормального уравнения, который прежде выражался рационально через коэффициенты уравнения теперь содержит еще и квадратные корни. Вы можете найти очень подробное изложение этой теории для уравнения пятой степени и соответственно для икосаэдра во второй части моих лекций об икосаэдре и притом в таком виде, что не только приводится вывод формул, но, кроме того, всегда указываются внутренние основания, приводящие к этим уравнениям.

Позвольте мне сказать еще несколько слов о том положении, которое эти построения занимают по отношению к обыкновенно излагаемой теории уравнений третьей, четвертой и пятой степени.

Прежде всего, обычные решения уравнений третьей и четвертой степени можно, конечно, получить из наших формул с помощью соответствующих вычислений, пользуясь решением уравнений диэдра, октаэдра и тетраэдра в радикалах.

Что же касается уравнений пятой степени, то, к сожалению, в учебниках обыкновенно ограничиваются констатированием того отрицательного результата, что такое уравнение невозможно решить с помощью ряда радикалов, присоединяя к этому еще туманное указание на то, что решение становится возможным посредством эллиптических функций — точнее следовало бы сказать «эллиптических модуль-функций». Я отношусь отрицательно к такому изложению, так как оно дает совершенно неправильное противопоставление и служит скорее помехой правильному пониманию положения вещей, чем способствует ему. В действительности, отделяя алгебраическую часть от аналитической, можно резюмировать все, к чему мы пришли, следующим образом.

1. Хотя и невозможно свести уравнение пятой степени, данное в общем виде, к двучленным уравнениям, но зато удается — и в этом именно и заключается собственно задача алгебраического решения — свести его к уравнению икосаэдра как к простейшему нормальному уравнению.

2. Уравнение икосаэдра в свою очередь можно решить посредством эллиптических модуль-функций; это пригодно для численного нахождения корней и является полным аналогом решения двучленных уравнений посредством логарифмов.

Это составляет полное решение проблемы уравнения пятой степени. В самом деле, когда что-либо не удается на обычном пути, не следует сразу отказываться от дальнейших попыток и удовлетворяться констатированием невозможности, но надо стараться подойти к вопросу с такой стороны, чтобы можно было его разрабатывать дальше. Математическая мысль как таковая никогда не имеет конца, и если вам кто-нибудь скажет, что в некотором месте прекращается математическое понимание, то будьте уверены, что там как раз должна найтись наиболее интересная постановка вопроса.

В заключение я хочу указать на то, что эти теории отнюдь не заканчиваются на уравнениях пятой степени; напротив, можно и для уравнений шестой и высших степеней развить вполне аналогичные теории, прибегая к помощи правильных тел в пространстве многих измерений. Если вы желаете ближе ознакомиться с этими теориями, то обратитесь к моей статье «О решении общего уравнения пятой и шестой степени».

Решение уравнений шестой степени соответственно приведенным в тексте принципам сведения уравнений пятой степени к теории икосаэдра было в связи с упомянутой моей работой 1905 г. успешно исследовано Горданом в двух работах Упрощенную и продолженную дальше разработку этой прблемы содержит работа А. Кобля.

1
Оглавление
email@scask.ru