Главная > Элементарная математика с точки зрения высшей, Т.1. Арифметика. Алгебра. Анализ
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

2. Основные законы арифметических действий

В ходе исторического развития, конечно, долго складывали и умножали, не отдавая себе отчета в тех законах, которым подчиняются эти операции. Лишь в 20-х и 30-х годах предыдущего столетия главным образом французские и английские математики выяснили основные свойства этих операций. Кто хочет ознакомиться с историей этого вопроса подробнее, тому я могу рекомендовать здесь, как буду это делать неоднократно ниже, большую «Энциклопедию математических наук».

Возвращаясь к нашей теме, я имею в виду теперь действительно перечислить те пять основных законов, к которым приводится сложение:

1) всегда представляет собою число, иначе говоря, действие сложения всегда без всяких исключений выполнимо (в противоположность вычитанию, которое в области положительных чисел выполнимо не всегда);

2) сумма всегда определена однозначно;

3) имеет место сочетательный, или ассоциативный закон: , так что скобки можно и вовсе опустить;

4) имеет место переместительный, или коммутативный закон:

5) имеет место закон монотонности: если , то .

Эти свойства понятны без дальнейших пояснений, если мы имеем перед глазами наглядное представление о числе как о количестве. Но они должны быть выражены строго формально, чтобы на них можно было опираться при дальнейшем строго логическом развитии теории.

Что касается умножения, то здесь действует, прежде всего, пять законов, аналогичных только что перечисленным:

1) всегда есть число;

2) произведение однозначно,

3) закон сочетательности:

4) закон переместительности:

5) закон монотонности: если , то

Наконец, связь сложения с умножением устанавливается шестым законом:

6) закон распределительности, или дистрибутивности:

Легко уяснить, что все вычисления опираются исключительно на эти 11 законов. Я ограничусь простым примером, скажем, умножением числа 7 на 12;

согласно закону распределительности

далее, если мы разобьем 14 на 10 + 4 (чтобы вывести «перенесение десятков»), то, опираясь на закон сочетательный, имеем

В этом коротком рассуждении вы, конечно, узнаете отдельные шаги, которые мы производим при вычислениях в десятичной системе. Предоставляю вам самим разобрать примеры посложнее. Мы здесь выскажем только сводный результат: наши цифровые вычисления заключаются в повторном применении перечисленных выше одиннадцати основных положений, а также в применении заученных наизусть результатов действий над однозначными числами (таблица сложения и таблица умножения).

Однако, где же находят себе применение законы монотонности? В обыкновенных, формальных вычислениях мы на Них действительно не опираемся, но они оказываются необходимыми в задачах несколько иного рода. Напомню вам здесь о способе, который в десятичном счете называют оценкой величины произведения и частного. Это прием величайшей практической важности, который, к сожалению, в школе и среди студентов известен далеко еще не достаточно, хотя при случае о нем говорят уже во втором классе; я здесь ограничусь только примером. Допустим, нам нужно умножить 567 на 134, причем в этих числах цифры единиц установлены, — скажем, посредством физических измерений — лишь весьма неточно. В таком случае было бы совершенно бесполезно вычислять произведение с полною точностью, так как такое вычисление все равно не гарантирует нам точного значения интересующего нас числа. Но что нам действительно важно — это знать порядок величины произведения, т. е. определить, в пределах какого числа десятков или сотен число заключается. Но эту, оценку закон монотонности действительно дает вам непосредственно, ибо из него вытекает, что искомое число содержится между 560-130 и 570-140. Дальнейшее развитие этих соображений я опять-таки предоставляю вам самим.

Во всяком случае, вы видите, что при «оценочных вычислениях» приходится постоянно пользоваться законами монотонности.

Что касается действительного применения всех этих вещей в школьном преподавании, то о систематическом изложении всех этих основных законов сложения и умножения не может быть и речи. Учитель может остановиться только на законах сочетательном, переместительном и распределительном, и то только при переходе к буквенным вычислениям, эвристически выводя их из простых и ясных численных примеров.

1
Оглавление
email@scask.ru