Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
В. Учение о малых колебаниях, в частности, о колебаниях маятника.Прежде всего я напомню вам вкратце тот вывод закона колебаний маятника, который мы обыкновенно излагаем в университете, пользуясь исчислением бесконечно малых. Предположим, что маятник висит на нити, длина которой равна
В случае небольших
Рис. 80 Общий интеграл этого уравнения выражается, как известно, посредством тригонометрических функций, которые, таким образом, играют здесь важную роль благодаря их дифференциальным свойствам (наличие тригонометрической величины
где А и В обозначают произвольные постоянные, или, иначе,
где постоянная С называется амплитудой, а отсюда получаем для времени полного колебания величину
Школьное изложение (скрытый анализ бесконечно малых). Но совершенно иначе — по сравнению с этими простыми и ясными рассуждениями, которые, конечно, становятся еще нагляднее при более обстоятельном изучении вопроса, — складывается так называемое «элементарное» изложение закона колебаний маятника, принятое в школе. При этом изложении хотят совершенно избежать всякого последовательного применения исчисления бесконечно малых, между тем как именно здесь физика в силу внутренней природы ее проблем повелительно требует применения методов бесконечно малых; в результате оказывается, что прибегают к помощи специального приема, изобретенного Разрешите мне, со своей стороны, для лучшего уяснения изложить в нескольких словах ход мыслей в элементарном выводе закона колебаний маятника, который применяется в учебниках и в школе. В этом доказательстве исходят из конического маятника; так называют пространственный маятник, который с равномерной скоростью v описывает окружность вокруг вертикальной оси, так что нить маятника описывает при этом поверхность прямого кругового конуса (рис. 81). Такое движение в механике называют правильной прецессией. Возможность такого движения в школе считают, конечно, установленной опытом и задаются лишь вопросом о том, какие соотношения имеют место между скоростью v и постоянным отклонением маятника от вертикали
Рис. 81 Чтобы движение не нарушилось, ее должна уравновешивать равная по величине сила, направленная к центру окружности, — так называемая центростремительная сила. Но последней является горизонтальная составляющая силы тяжести, равная по величине
или
Отсюда находим, что время одного колебания маятника Г, т. е. то время, в течение которого маятник описывает полную окружность
другими словами, конический маятник совершает в случае достаточно малых отклонений а правильную прецессию с определенным периодом, величина которого не зависит от а. Если мы хотим подвергнуть критике уже эту часть вывода, то, прежде всего, замену Но на этом еще далеко не кончается вывод закона колебаний маятника. Мы показали только возможность равномерного движения по кругу, которое на языке аналитической механики изображается следующими уравнениями, если возьмем оси х и у в плоскости этого круга (т. е. при наших упрощениях в плоскости, касательной к сфере) (рис. 82):
Но мы желаем получить плоские колебания маятника, другими словами, тяжелая точка маятника должна Двигаться по нашей плоскости
Рис. 82 Итак, нам надо от уравнений (4) прийти к уравнениям (5), причем мы не должны пользоваться дифференциальными уравнениями динамики. Этого достигают, вводя принцип наложения небольших колебаний, согласно которому, если возможны два движения
В результате, если взять При критике этих рассуждений прежде всего возникает, конечно, вопрос о том, каким образом можно обосновать или, по крайней мере, сделать правдоподобным, не пользуясь дифференциальным исчислением, принцип наложения колебаний. Но главным образом при всех таких элементарных приемах изложения всегда возникает вопрос о том, не могут ли такие последовательно допускаемые неточности привести в результате к заметной ошибке, хотя бы в отдельности эти неточности и были допустимы. Подробнее останавливаться на этом мне не приходится, так как эти вопросы столь элементарны, что всякий из вас может самостоятельно продумать их до конца, раз ваше внимание на них обращено. Я же хотел бы еще раз отметить, что здесь речь идет о следующем центральном пункте проблемы преподавания: с одной стороны, здесь ясно выступает потребность принимать во внимание исчисление бесконечно малых, а с другой стороны, обнаруживается необходимость введения тригонометрических функций в общем виде, независимо от их специального применения к геометрии треугольника. Теперь я перейду к последнему из тех применений тригонометрических функций, о которых я имел в виду говорить.
|
1 |
Оглавление
|