Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Проблемы интерполирования и разностного исчисления.Я хочу еще оживить теорему Тейлора тем, что покажу, в каком отношении она стоит к проблемам интерполирования и разностного исчисления. И в этих дисциплинах занимаются вопросом о том, чтобы приближенно изобразить заданную кривую при помощи параболы; но здесь вопрос ставится иначе; здесь парабола не должна примыкать к данной кривой в одной определенной точке, а напротив, требуется, чтобы она пересекала заданную кривую в нескольких заранее указанных точках; вопрос снова заключается в том, в какой мере такая «интерполяционная парабола» представляет собой пригодное приближение. В простейшем случае разница сводится к тому, что кривую заменяют не ее касательной, а ее секущей (рис. 114); аналогично исследуют квадратичную параболу, проходящую через три точки данной кривой, кубическую параболу, проходящую через четыре точки, и т. д. Такая постановка вопроса в теории интерполирования является вполне естественной и применяется необычайно часто, например при употреблении численных логарифмических таблиц. Действительно, в этом случае как раз допускают, что логарифмическая кривая проходит между двумя значениями, данными в таблице, по прямой линии, и поэтому интерполируют линейно по обычному способу, пользуясь «табличками разностей». Если же это не дает достаточно точных результатов, то применяют и квадратичную интерполяцию. По отношению к этой общей задаче определение соприкасающихся парабол по теореме Тейлора представляет собой частный случай, а именно здесь все точки пересечения кривой с интерполяционными параболами сливаются в одну точку. Конечно, при такой замене кривой соприкасающимися параболами слово «интерполирование», собственно говоря, не подходит; но, с другой стороны, в задачу интерполирования всегда включают также и экстраполирование-, так, например, секущую сравнивают с кривой не только между ее точками пересечения, но и вне отрезка с концами в этих точках. Поэтому для обозначения всего способа в целом более целесообразным представляется, пожалуй, общее выражение «приближение». Теперь я намерен указать наиболее важные интерполяционные формулы. Поставим себе прежде всего целью определить параболу
В этой формуле содержится Справедливость этой формулы можно сразу проверить: с одной стороны, все слагаемые выражения у, а следовательно, и само у представляют собой многочлены
Рис. 115
Рис. 116 Из этой формулы можно получить как частный случай формулу Ньютона, которая исторически, конечно, гораздо старше формулы Лагранжа. Формула Ньютона относится к тому случаю, когда даны равноотстоящие абсциссы Пусть
Но
аналогично полагаем далее
и т. д. Эти обозначения вполне аналогичны обозначениям дифференциального исчисления с той только разницею, что здесь мы имеем дело с определенными конечными величинами и ни о каких предельных переходах нет речи. Из написанных выше равенств, выражающих определения разностей, непосредственно вытекают такие выражения для значений функции f в последовательных равноотстоящих точках:
Таким же простым образом выражаются значения функции Формула Ньютона выражает интерполирующую параболу
т. е. такую параболу, которая при этих абсциссах имеет ординаты, равные соответствующим значениям функции
В самом деле, это, во-первых, многочлен Если мы хотим в действительности применить с успехом одну из этих формул интерполирования, то нам надо еще знать что-нибудь относительно той точности, с которой они выражают функцию Эту оценку указал Коши в 1840 г., и я охотно приведу здесь ее вывод. Будем исходить из общей формулы Лагранжа, пусть
Согласно определению функции
Выделение множителя Что же касается доказательства этой формулы остатка, то его удается провести при помощи такого приема: составляем функцию от новой переменной
где аргумент
то
Далее, находим, что и
Но
так как
т. е.
а это и требовалось доказать. Я выпишу подробно, в частности, интерполяционную формулу Ньютона с ее остаточным членом;
где Я уже указывал на линейное интерполирование при пользовании таблицами логарифмов; для
ибо Я не буду больше останавливаться на приложениях, а перейду к замечательной аналогии между интерполяционной формулой Ньютона и формулой Тейлора. В основе этой аналогии лежит следующее обстоятельство: из формулы Ньютона можно очень легко и притом совершенно строго вывести формулу Тейлора с остаточным членом; этот вывод вполне соответствует переходу от интерполяции к приближенным параболам. В самом деле, если при постоянных
Отсюда следует, что множитель
Таким образом, мы вполне доказали теорему Тейлора и в то же время показали, с каким изяществом ее можно привести в связь с общим учением об интерполяции. Благодаря этой тесной связи с очень простыми вопросами и благодаря тому, что предельный переход здесь так легок, я считаю этот вывод формулы Тейлора лучшим из всех возможных выводов. Однако не все математики, даже хорошо знакомые с этими вещами, — нужно, впрочем, заметить, что, как это ни странно, их часто не знают даже составители учебников, — придерживаются этого мнения; они обыкновенно принимают очень серьезный вид, приступая к предельному переходу, и предпочитают дать непосредственное доказательство теоремы Тейлора, чем вывод ее при помощи исчисления конечных разностей. Но я могу здесь же отметить, что исторически источником открытия ряда Тейлора было именно разностное исчисление. Как я уже упоминал, в первый раз этот ряд построил Тейлор в 1715 г.
и считает очевидным, что этот ряд можно продолжать до бесконечности, — ни об остаточном члене, ни о сходимости у него нет и речи. Это — неслыханный по своей смелости предельный переход. Первые члены, в которых встречается В сущности, Тейлор здесь оперирует с бесконечно малыми величинами (дифференциалами) гораздо, если можно так выразиться, легкомысленнее, чем это когда-либо делали последователи Лейбница: интересно отметить, что ему было тогда 29 лет, и он на глазах Ньютона так уклонился от метода пределов, которым пользовался последний. Как бы там ни было, ему удалось таким образом сделать свое очень важное открытие. Я хотел бы еще сказать несколько слов по поводу делаемого обыкновенно различия между рядом Тейлора и рядом Маклорена. Как известно, во всех учебниках под названием ряда Маклорена отдельно рассматривают частный случай ряда Тейлора при
и легко может прийти в голову, что очень важно строго отличать один ряд от другого. Каждому знакомому с делом ясно, что с математической точки зрения это различие совсем несущественно; менее известно то обстоятельство, что оно исторически также является бессмыслицей. Во-первых, Тейлору принадлежит несомненный приоритет в отношении общей теоремы, к которой он пришел, как указано выше. Но, кроме того, он дальше в своей работе специально останавливается на той форме, которую его ряд принимает при
|
1 |
Оглавление
|