Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 29. Пондеромоторная сила. Динамика электронаУже в своей первой работе Эйнштейн показал, что теория относительности позволяет сделать вполне определенные заключения о законах движения точечного заряда, движущегося в электромагнитном поле с произвольно большой скоростью, если эти законы известны для движения с бесконечно малой скоростью. Под точечным зарядом здесь понимается любой заряд, размеры которого так малы, что в области, занимаемой зарядом, внешнее поле может считаться однородным. «Точечный заряд» может, таким образом, не быть электроном. Если Е — напряженность внешнего электрического поля, а
С помощью формул (194) и (207) можно сразу же установить закон движения в системе К, относительно которой заряд (и система К) движется со скоростью и в направлении положительных значений координаты
Прежде всего мы видим, что в правой части стоит как раз сила Лоренца (см. [132], § 3, уравнение (VI)). Если в старой теории эта сила вводилась в качестве новой аксиомы, здесь она получена как следствие принципа относительности. В связи с этим следует, правда, заметить, что в формулах (211), включающих члены второго и высшего порядков относительно
является наиболее целесообразным и единственно естественным; именно, оказывается, что только при таком определении силы она может рассматриваться как производная по времени от импульса, остающегося постоянным для замкнутой системы (см. § 37). Из (212) и (204) вытекают формулы преобразования для силы:
если предположить, что в системе К материя, на которую действует сила, покоится в рассматриваемый момент времени. В старой литературе, на основании (211), часто называли
причем теперь везде роль массы играет выражение
Это выражение для зависимости массы от скорости было впервые получено для массы электрона Лоренцом [13], исходившим из цредположения о том, что и электроны испытывают при движении лоренцево сокращение. Теория твердого электрона, принадлежащая Абрагаму, приводит к более сложной формуле для изменения массы. Вытекающее из теории относительности обоснование лоренцева закона изменения массы без всяких специальных предположений о форме электрона и распределении заряда в нем является ее несомненным успехом. О природе массы также не нужно делать никаких предположений; выражение (215) справедливо для любой массы; здесь это показано для электромагнитной силы, а в релятивистской механике обобщается для любых сил (см. § 37). Старая точка зрения, согласно которой путем опытов с отклонением катодных лучей можно отличить «постоянную истинную» массу от «кажущейся» электромагнитной (см. [130], § 65), поэтому не может быть сохранена. Формула (215) для изменения массы или, правильнее, закон движения (211), открывает возможность проверить теорию относительности путем опытов с отклонением быстрых катодных или в пользу формулы Абрагама. Кауфман, однако, переоценил точность своих измерений. Опытами Бухерера, Гупка [143] и Ратновского [144], а затем, совершенно однозначно, опытами Неймана [145] (с дополнением Шефера [146] и Гюи и Лаванши [147]) была установлена справедливость релятивистской формулы. В настоящее время удается гораздо точнее определить зависимость массы электрона от скорости, если использовать для проверки предсказание теории относительности, касающееся тонкой структуры атома водорода. Соответствующий эксперимент полностью подтверждает формулу специальной теории относительности. До сих пор, однако, не удалось установить на эксперименте изменение массы для других, отличных от электрона, частиц, поскольку этот эффект мал даже для быстрых а-частиц (см. примеч. 9). Уравнение (211) может быть представлено в четырехмерной инвариантной форме, если перейти от силы, действующей на весь заряд, к силе
на единицу объема (плотности силы). Это выражение наводит на мысль построить произведение бивектора и четырехмерного вектора тока
Получающийся вектор
Сила на единицу объема (плотность силы) представляет собой три пространственные компоненты четырехмерпого вектора, временная компонента которого есть (деленная на с) работа в единицу времени, приходящаяся на единицу объема (плотность мощности). Это важное обстоятельство было в значительной мере установлено еще Пуанкаре [14] и позже ясно сформулировано Минковским [64]. Из (201) и (216) следует, что четырехмерный вектор плотности электромагнитной силы перпендикулярен к вектору скорости
Теперь можно сформулировать в четырехмерной инвариантной форме закон движения (214); это можно сделать двумя способами. С одной стороны, можно ввести четырехмерный вектор
То, что эти величины действительно образуют четырехмерный вектор, следует из формул преобразования (213) для силы. Выражение
С другой стороны, можно отнести уравнения
Следует заметить, что физический смысл уравнений (221) не совсем ясен, если они применяются к электрону (см. гл. V, § 63), по крайней мере до тех пор, пока вектору При
|
1 |
Оглавление
|