Главная > Радиотехнические цепи и сигналы
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава 12. Преобразования сигналов в линейных параметрических цепях

Интересными и полезными для радиотехнических приложений свойствами обладают линейные системы, которые описываются нестационарными системными операторами зависящими от времени. Закон преобразования входного сигнала здесь имеет вид

причем благодаря линейности системы

при любых постоянных

Цепи, описываемые равенством (12.1), называются параметрическими. Термин связан с тем, что в составе таких цепей обязательно присутствуют элементы, параметры которых зависят от времени. В радиотехнических цепях находят применение следующие параметрические резисторы конденсаторы и индуктивности

Отличительная черта линейной параметрической системы — наличие вспомогательного источника колебаний, управляющего параметрами элементов.

Важная роль, отводимая в радиотехнике параметрическим цепям, обусловлена их способностью преобразовывать спектры входных сигналов, а также возможностью создания малошумящих параметрических усилителей.

12.1. Прохождение сигналов через резистивные параметрические цепи

Параметрическую цепь называют резистивной, если ее системный оператор имеет числа , зависящего от времени и служащего коэффициентом пропорциональности между входным и выходным сигналами:

Простейшей системой такого вида служит параметрический резистор с сопротивлением . Закон, связывающий мгновенные значения напряжения и тока в этом двухполюснике, таков:

Параметрический резистивный элемент может описываться также переменнойво времени проводимостью

Реализация параметрических резистивных элементов.

На практике параметрически управляемые резисторы создают следующим образом.

На вход безынерционного нелинейного двухполюсника с вольт-амперной характеристикой подают сумму даух колебаний: управляющего напряжения и напряжения сигнала При этом управляющее напряжение значительно превышает по амплитуде полезный сигнал. Ток в нелинейном двухполюснике можно записать, разложив вольт-амперную характеристику в ряд Тейлора относительно мгновенного значения управляющего напряжения:

Амплитуду сигнала выбирают столь малой, что в формуле (12.5) можно пренебречь вторыми и более высокими степенями величины Обозначив через приращение тока в двухполюснике, вызванное наличием сигнала, получим

Ниже будут изучены важные применения параметрических резистивных элементов рассмотренного вида.

Преобразование частоты.

Так называют трансформацию модулированного сигнала, связанную с переносом его спектра из окрестности несущей частоты в окрестность некоторой промежуточной частоты совершаемую без изменения закона модуляции.

Преобразователь частоты состоит из смесителя — параметрического безынерционного элемента, и гетеродина — вспомогательного генератора гармонических колебаний с частотой служащего для параметрического управления смесителем. Под действием напряжения гетеродина дифференциальная крутизна вольт-амперной характеристики смесителя периодически изменяется во времени по закону

Если на входе преобразователя частоты действует напряжение АМ-сигнала , в соответствии с выражениями (12.6) и (12.7) в выходном токе появляется составляющая ПО см

В качестве промежуточной принято выбирать частоту ток на промежуточной частоте

является АМ-колебанием с тем же законом модуляции, что и входной сигнал.

Для выделения составляющих спектра с частотами, близкими к промежуточной частоте, в выходную цепь преобразователя включают колебательный контур, настроенный на частоту

Рис. 12.1. Структурная схема супергетеродинного приемника

Преобразование частоты широко используется в радиоприемных устройствах — так называемых супергетеродинах. Структурная схема супергетеродинного приемника изображена на рис. 12.1.

Сигнал, принятый антенной, через фильтрующие входные цепи и усилитель радиочастоты (УРЧ) поступает на преобразователь. Выходной сигнал преобразователя является модулированным колебанием с несущей частотой, равной промежуточной частоте приемника. Основное усиление приемника и его частотная избирательность, т. е. способность выделять полезный сигнал из помех с другими частотами, обеспечиваются узкополосным усилителем промежуточной частоты (УПЧ).

Большое достоинство супергетеродина — неизменность промежуточной частоты; для настройки приемника приходится перестраивать лишь гетеродин и в некоторых случаях колебательные системы, которые имеются во входных цепях и в УРЧ.

Отметим, что преобразователь частоты одинаково реагирует на сигналы с частотами радиотехнике говорят, что возможен прием как по основному, так и по зеркальному каналу. Во избежание неоднозначности настройки приемника требуется обеспечить такую избирательность резонансных систем, включенных между антенной и преобразователем частоты, чтобы практически подавить сигналы зеркального канала.

Крутизна преобразования.

Эффективность работы преобразователя частоты принято характеризовать особым параметром — крутизной преобразования которая служит коэффициентом пропорциональности между амплитудой тока промежуточной частоты и амплитудой немодулированного напряжения сигнала, т. е. Как следует из соотношения (12.8),

Итак, крутизна преобразования равна половине амплитуды первой гармоники дифференциальной крутизны параметрического элемента.

Предположим, что вольт-амперная характеристика нелинейного элемента, входящего в преобразователь частоты, квадратична: . В отсутствие сигнала к элементу приложена сумма напряжений смещения и гетеродина:

Дифференциальная крутизна преобразователя изменяется во времени по закону

(12.10)

Обращаясь к формуле (123), видим, что в данном случае

(12.11)

Таким образом, при постоянном уровне полезного сигнала на входе амплитуда выходного сигнала преобразователя пропорциональна амплитуде напряжения гетеродина.


Пример 12.1. В преобразователе частоты использован нелинейный элемент (транзистор) с характеристикой имеющей параметр Резонансное сопротивление колебательного контура в коллекторной цепи . Амплитуда смодулированного входного сигнала амплитуда напряжения гетеродина . Найти значение — амплитуду напряжения промежуточной частоты на выходе преобразователя.

По формуле (12.11) вычисляем крутизну преобразования Амплитуда тока промежуточной частоты в цепи коллектора . Полагая выходное сопротивление транзистора достаточно высоким, гак что можно пренебречь его шунтирующим действием на колебательный контур, находим


Синхронное детектирование.

Предположим, что в преобразователе частоты гетеродин настроен точно на частоту сигнала, поэтому дифференциальная крутизна изменяется во времени по закону

Подав на вход такого устройства АМ-сигнала , получаем выражение для тока обусловленного сигналом:

(12.12)

Выражение, стоящее здесь в квадратных скобках, содержит постоянную составляющую которая зависит от сдвига фазы между сигналом гетеродина и несущим колебанием входного сигнала. Поэтому в спектре выходного тока появится низкочастотная составляющая

(12.13)

этот ток пропорционален переменной амплитуде АМ-сигнала.

Синхронным детектором называют преобразователь частоты, работающий при условии ; для выделения полезного сигнала на выходе включен ФНЧ, например, параллельная RC-цепь.

При использовании синхронных детекторов на практике между несущим колебанием входного сигнала и колебанием гетеродина должно поддерживаться жесткое фазовое соотношение.

Наиболее благоприятен режим работы при если же , то полезный выходной сигнал отсутствует. Чувствительность синхронного детектора к сдвигу фаз позволяет использовать его для измерения фазовых соотношений между двумя когерентными колебаниями.

Ниже показана конкретная методика расчета синхронного детектора.


Пример 12.2. В синхронном детекторе использован транзистор, характеристика которого аппроксимируется двумя отрезками прямых. Параметры аппроксимации: . Амплитуда напряжения гетеродина , постоянное напряжение смещения отсутствует Немодулированное напряжение полезного сигнала с амплитудой сдвинуто по фазе относительно колебаний гетеродина на угол . Определить изменение уровня постоянного напряжения на выходе синхронного детектора, вызванное полезным сигналом, если сопротив ление резистора .

При данном виде вольт-амперной характеристики нелинейного элемента дифференциальная крутизна может принимать лишь два значения:

Поэтому график изменения дифференциальной крутизны во времени представляет собой периодическую последовательность прямоугольных видеоимпульсов. Угол отсечки тока , определяющий длительность этих импульсов, найдем по формуле (см. гл. 2)

Разлагая функцию в ряд Фурье, вычисляем амплитуду первой гармоники крутизны:

Полезный сигнал вызывает согласно (12.13) приращение тока через транзистор на величину . Отсюда находим изменение уровня постоянного напряжения на выходе синхронного детектора:


Спектр сигнала на выходе параметрического резистивного элемента.

Анализ работы преобразователя частоты и синхронного детектора убеждает, что в параметрическом резистивном элементе возникают спектральные составляющие, которые отсутствуют на входе этого элемента.

Рассмотрим параметрическое преобразование вида (12.3) с общих позиций спектрального анализа. Очевидно, параметрический резистивный элемент функционирует как перемножитель входного сигнала и управляющего колебания

Запишем следующее соответствие между сигналами и их преобразованиями Фурье:

На основании теоремы о спектре произведения сигналов (см. гл. 2) спектральная плотность выходного сигнала представляет собой свертку

(12.14)

В прикладном отношении большой интерес представляет случай, когда управляющее колебание является периодическим с некоторым заданным периодом и может быть представлено рядом Фурье

(12.15)

где — угловая частота управляющего сигнала.

Как известно, подобный неинтегрируемый сигнал имеет спектральную плотность, отличную от нуля лишь в дискретных точках на оси частот:

(12.16)

Подставив данное выражение в формулу (12.14), получим спектр сигнала на выходе параметрического элемента:

(12.17)

Спектр стробированного сигнала.

Анализ общей формулы (12.17) удобно провести применительно к частному, но широко распространенному на практике случаю. Пусть управляющая функция на протяжении каждого периода равна единице в пределах отрезка времени длительностью ; в остальные моменты времени функция равна нулю.

В радиотехнике операцию умножения сигнала на функцию подобного вида называют стробированием сигнала.

Легко убедиться, что коэффициенты комплексного ряда Фурье (12.15) применительно к рассматриваемой стробирующей функции выражаются следующим образом:

(12.18)

где — скважность стробирукяцей последовательности.

Подстановка этого результата в формулу (12.17) приводит к выводу о том, что спектральная плотность стробированного сигнала

Рис. 12.2 иллюстрирует процесс трансформации спектра при стробировании идеального низкочастотного сигнала (см. гл. 5).

Рис. 12.2. Стробирование идеального низкочастотного сигнала: а — временная диаграмма сигнала на выходе стробирующего устройства; б — спектральная плотность выходного сигнала

Графики изображены для случая, когда частота управляющего сигнала значительно превышает величину — верхнюю граничную частоту в спектре входного сигнала.

Можно заметить, что в спектре стробированного сигнала возникает бесконечное число «копий» спектра исходного колебания. Каждая такая «копия» локализуется на оси частот вблизи точек соответствующих гармоникам основной частоты генератора, который управляет стробирующим устройством. С ростом номера интенсивность спектральных составляющих падает пропорционально множителю

Модуляторы и детекторы на базе параметрических резистивных элементов.

Подав на один из входов перемножителя сигнал пропорциональный передаваемому сообщению, а на другой немодулированное колебание вида получим на выходе сигнал с балансной амплитудной модуляцией

Такое устройство легко превратить в модулятор, создающий АМ-сигнал с обеими боковыми полосами и с неподавленным несущим колебанием, если к первому из сигналов добавить постоянную составляющую:

Используя параметрический элемент-перемножитель, можно создать устройство для получения любых модулированных сигналов — AM, ЧМ или ФМ.

Рис. 12.3. Структурная схема параметрического модулятора

Работа параметрического модулятора основана на том, что модулированные радиосигналы, будучи узкополосными колебаниями, допускают представление (см. гл. 5) вида

Структурная схема параметрического модулятора общего вида представлена на . Устройство состоит из даух перемножителей инвертора и сумматора. Модулирующими сигналами служат синфазная и квадратурная составляющие комплексной огибающей выходного сигнала.

Колебание несущей частоты в соответствии с выражением (12.20) должно подаваться на входы перемножителей, имея взаимный фазовый сдвиг 90°. В простейшем случае, когда требуется получить АМ-сигнал, в схеме рис. 12.3 достаточно иметь только один, например верхний, канал.

С параметрическим демодулятором мы уже познакомились на примере синхронного детектора. В общем случае такой демодулятор представляет собой каскадное соединение перемножителя и фильтра нижних частот (ФНЧ). К одному из входов перемножителя приложен сигнал подлежащий детектированию, на второй вход подано периодическое управляющее напряжение

причем частота колебания управляющего генератора должна находиться в целократном отношении с несущей частотой:

При этом условии в составе сигнала на выходе перемножителя будет присутствовать низкочастотная составляющая, обусловленная гармоникой управляющего напряжения. Так, при демодуляции АМ-сигнала имеем

Если демодуляции подлежит сигнал с угловой модуляцией вида «в то

1
Оглавление
email@scask.ru