Главная > Радиотехнические цепи и сигналы
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава 15. Дискретные сигналы. Принципы цифровой фильтрации

Дискретные сигналы естественно возникают в тех случаях, когда источник сообщений выдает информацию в фиксированные моменты времени. Примером могут служить сведения о температуре воздуха, передаваемые радиовещательными станциями несколько раз в сутки. Свойство дискретного сигнала проявляется здесь предельно ярко: в паузах между сообщениями никаких сведений о температуре нет. Фактически же температура воздуха изменяется во времени плавно, так что результаты измерения возникают за счет дискретизации непрерывного сигнала — операции, которая фиксирует отсчетные значения.

Дискретные сигналы приобрели особое значение в последние десятилетия под влиянием совершенствования техники связи и развития способов обработки информации быстродействующими вычислительными устройствами. Большие успехи достигнуты в разработке и использовании специализированных устройств для обработки дискретных сигналов, так называемых цифровых фильтров.

Настоящая глава посвящена рассмотрению принципов математического описания дискретных сигналов, а также теоретических основ построения линейных устройств для их обработки.

15.1. Модели дискретных сигналов

Различие между дискретными и аналоговыми (непрерывными) сигналами подчеркивалось в гл. 1 при классификации радиотехнических сигналов. Напомним основное свойство дискретного сигнала: его значения определены не во все моменты времени, а лишь в счетном множестве точек. Если аналоговый сигнал имеет математическую модель вида непрерывной или кусочно-непрерывной функции, то отвечающий ему дискретный сигнал представляет собой последовательность отсчетных значений сигнала в точках соответственно.

Дискретизирующая последовательность.

На практике, как правило, отсчеты дискретных сигналов берут во времени через равный промежуток А, называемый интервалом (шагом) дискретизации:

Операцию дискретизации, т. е. переход от аналогового сигнала к дискретному сигналу , можно описать, введя в рассмотрение обобщенную функцию

называемую дискретизирующей последовательностью.

Очевидно, дискретный сигнал представляет собой функционал (см. гл. 1), определенный на множестве всевозможных аналоговых сигналов и равный скалярному произведению функции

Формула (15.3) указывает путь практической реализации устройства для дискретизации аналогового сигнала. Работа дискретизатора основана на операции стробирования (см. гл. 12) — перемножения обрабатываемого сигнала и «гребенчатой» функции Поскольку длительность отдельных импульсов, из которых складывается дискретизирующая последовательность, равна нулю, на выходе идеального дискретизатора в равноотстоящие моменты времени возникают отсчетные значения обрабатываемого аналогового сигнала.

Рис. 15.1. Структурная схема импульсного модулятора

Модулированные импульсные последовательности.

Дискретные сигналы начали использовать еще в 40-х годах при создании радиотехнических систем с импульсной модуляцией. Этот вид модуляции отличается тем, что в качестве «несущего колебания» вместо гармонического сигнала служит периодическая последовательность коротких импульсов.

Импульсный модулятор (рис. 15.1) представляет собой устройство с двумя входами, на один из которых подается исходный аналоговый сигнал На другой вход поступают короткие синхронизирующие импульсы с интервалом повторения . Модулятор построен таким образом, что в момент подачн каждого синхронизирующего импульса происходит измерение мгновенного значения сигнала х(t). На выходе модулятора возникает последовательность импульсов, каждый из которых имеет площадь, пропорциональную соответствующему отсчетному значению аналогового сигнала.

Сигнал на выходе импульсного модулятора будем называть модулированной импульсной последовательностью (МИП). Естественно, что дискретный сигнал является математической моделью МИП.

Отметим, что с принципиальной точки зрения характер импульсов, из которых складывается МИП, безразличен. В частности, эти импульсы могут иметь одинаковую длительность, в то время как их амплитуда пропорциональна отсчетным значениям дискретизируемого сигнала. Такой вид преобразования непрерывного сигнала получил название амплитудно-импульсной модуляции (АИМ). Возможен другой способ — широтно-импульсная модуляция (ШИМ). Здесь амплитуды импульсов на выходе модулятора постоянны, а их длительность (ширина) пропорциональна мгновенным значениям аналогового колебания.

Выбор того или иного способа импульсной модуляции диктуется рядом технических соображений, удобством схемной реализации, а также характерными особенностями передаваемых сигналов. Например, нецелесообразно использовать АИМ в случае, если полезный сигнал изменяется в очень широких пределах, т. е., как часто говорят, имеет широкий динамический диапазон. Для неискаженной передачи такого сигнала требуется передатчик со строго линейной амплитудной характеристикой. Создание такого передатчика — самостоятельная, технически сложная проблема. Системы ШИМ не предъявляют требований к линейности амплитудных характеристик передающего устройства. Однако их схемная реализация может оказаться несколько сложнее по сравнению с системами АИМ.

Математическую модель идеальной МИП можно получить следующим образом. Рассмотрим формулу динамического представления сигнала (см. гл. 1):

Поскольку МИП определена лишь в точках интегрирование в формуле (15.4) следует заменить суммированием по индексу к. Роль дифференциала будет играть интервал (шаг) дискретизации . Тогда математическая модель модулированной импульсной последовательности, образованной бесконечно короткими импульсами, окажется заданной выражением

где — выборочные значения аналогового сигнала.

Спектральная плотность модулированной импульсной последовательности.

Исследуем спектр сигнала, возникающего на выходе идеального импульсного модулятора и описываемого выражением (15.5).

Заметим, что сигнал вида МИП с точностью до коэффициента пропорциональности А равен произведению функции и дискретизирующей последовательности

Известно, что спектр произведения двух сигналов пропорционален свертке их спектральных плотностей (см. гл. 2). Поэтому бели известны законы соответствия сигналов и спектров:

то спектральная плотность МИП-сигнала

Чтобы найти спектральную плотность дискретизирующей последовательности, разложим периодическую функцию в комплексный ряд Фурье:

Коэффициенты этого ряда

Обратившись к формуле (2.44), получаем

т. е. спектр дискретизирующей последовательности состоит из бесконечной совокупности дельта-импульсов в частотной области. Данная спектральная плотность является периодической функцией с периодом

Наконец, подставив формулу (15.8) в (15.7) и изменив порядок следования операций интегрирования и суммирования, находим

Итак, спектр сигнала, полученного в результате идеальной дискретизации бесконечно короткими стробирующими импульсами, представляет собой сумму бесконечного числа «копий» спектра исходного аналогового сигнала. Копии располагаются на оси частот через одинаковые интервалы равные значению угловой частоты первой гармоники дискретизирующей импульсной последовательности (рис. 15.2, а, б).

Рис. 15.2. Спектральная плотность модулированной импульсной последовательности при различных значениях верхней граничной частоты: а — верхняя граничная частота велика; б — верхняя граничная частота мала (цветом обозначена спектральная плотность исходного сигнала, подвергнутого дискретизации)

Восстановление непрерывного сигнала по модулированной импульсной последовательности.

В дальнейшем будем полагать, что вещественный сигнал имеет низкочастотный спектр, симметричный относительно точки и ограниченный верхней граничной частотой Из рис. 15.2, б следует, что если , то отдельные копии спектра не накладываются друг на друга.

Поэтому аналоговый сигнал с таким спектром, подвергнутый импульсной дискретизации, может быть совершенно точно восстановлен с помощью идеального ФНЧ, на вход которого подана импульсная последовательность вида (15.5). При этом наибольший допустимый интервал дискретизации , что согласуется с теоремой Котельникова.

Действительно, пусть фильтр, восстанавливающий непрерывный сигнал, имеет частотный коэффициент передачи

Импульсная характеристика этого фильтра описывается выражением

Принимая во внимание, что МИП-сигнал вида (15.5) есть взвешенная сумма дельта-импульсов, находим отклик на выходе восстанавливающего фильтра

Данный сигнал с точностью до масштабного коэффициента повторяет исходное колебание с ограниченным спектром.

Идеальный ФНЧ физически нереализуем и может служить лишь теоретической моделью для объяснения принципа восстановления сообщения по его дискретным импульсным отсчетам. Реальный фильтр нижних частот имеет АЧХ, которая либо охватывает несколько лепестков спектральной диаграммы МИП, либо, концентрируясь вблизи нулевой частоты, оказывается значительно уже центрального лепестка спектра. Для примера на рис. 15.3, б-е приведены кривые, характеризующие сигнал на выходе RC-цепи, используемой в качестве восстанавливающего фильтра (рис. 15.3, а).

Рис. 15.3. Восстановление непрерывного сигнала по его импульсным отсчетам с помощью RC-цепи: а — схема фильтра; б — дискретный входной сигнал; в, г — АЧХ фильтра и сигнал на его выходе в случае ; д, е — то же, для случая

Из приведенных графиков видно, что реальный восстанавливающий фильтр неизбежно искажает входное колебание.

Заметим, что для восстановления сигнала можно использовать как центральный, так и любой боковой лепесток спектральной диаграммы.

Определение спектра аналогового сигнала по совокупности отсчетов.

Располагая МИП-представлением, можно не только восстановить аналоговый сигнал, но и найти его спектральную плотность. Для этого следует прежде всего непосредственно связать спектральную плотность МИП с отсчетными значениями:

(15.11)

С другой стороны, спектральная плотность была найдена ранее другим способом [см. формулу (15.9)]. Поэтому справедливо соотношение

(15.12)

известное в математике как формула суммирования Пуассона.

Однозначно найти функцию , зная левую часть равенства (15.12) из результатов измерений, вообще говоря, невозможно ввиду эффекта наложения копий спектра. Исключение составляет случай, когда заранее известно, что исходный сигнал имеет спектр низкочастотного вида, удовлетворяющий условию теоремы Котельникова. Тогда очевидно, что спектр аналогового сигнала

(15.13)

Данная формула исчерпывающе решает поставленную задачу при указанном выше ограничении.

1
Оглавление
email@scask.ru