Главная > Введение в теорию случайных сигналов и шумов
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

10.2. Шумфактор

Теперь мы в состоянии определить шумфактор усилителя: рабочий шумфактор усилителя есть отношение дифференциальной номинальной мощности шума на выходе усилителя к той ее части которая обусловлена только шумом источника, подаваемого на вход усилителя:

Таким образом, шумфактор усилителя есть мера его «шумности» относительно «шумности» источника.

Можно дать другое определение шумфактора. А именно, номинальная мощность шума на выходе усилителя, обусловленная только шумом источника, равна произведению номинальной мощности шума источника на номинальное усиление усилителя по мощности . Подставив этот результат в равенство (10.11) и затем умножив и разделив полученное выражение на номинальную мощность источника, получим

Здесь есть теперь номинальная мощность сигнала выходе усилителя Следовательно, мы можем написать

Таким образом, шумфактор усилителя равен дифференциальному отношению сигнал/шум источника деленному на дифференциальное отношение сигнал/шум на выходе усилителя . Именно это соотношение было введено Фризом в качестве первоначального определения шумфактора.

Установим некоторые свойства шумфактора. Прежде всего заметим, что, поскольку мощности, используемые для определения шумфактора, относятся к дифференциальным частотным полосам, шумфактор является функцией частоты.

Далее, заметим, что шум на выходе усилителя обусловлен двумя независимыми причинами: шумом источника и шумом, генерируемым в самом усилителе. Поэтому дифференциальная мощность шума на выходе есть сумма дифференциальной мощности шума обусловленного источником, и дифференциальной мощности шума обусловленной собственным шумом

усилителя. Используя этот факт в равенстве (10.11), получаем

Поскольку обе составляющие мощности шума на выходе неотрицательны, шумфактор усилителя всегда не меньше единицы:

Дифференциальная выходная мощность шума, обусловленная шумом источника, может быть выражена через усиление усилителя по мощности и эффективную шумовую температуру источника. Поэтому равенство (10.13) может быть переписано в виде

Мощность шума на выходе, обусловленная собственным шумом усилителя, обычно не зависит от эффективной шумовой температуры источника. Поэтому, согласно равенству (10.15), шумфактор усилителя зависит от эффективной шумовой температуры источника: чем ниже тем выше

Стандартный шумфактор усилителя определяется как шумфактор, соответствующий стандартной эффективной шумовой температуре источника:

Следовательно, шумфактор может быть выражен через стандартный шумфактор:

так как во многих приложениях эффективная шумовая температура источника заметно отличается от стандартного значения 290° К (например, когда источником служит антенна), то применять стандартный шумфактор следует с осторожностью.

Со стороны выходных зажимов усилителя комбинация источника сигнала и усилителя, изображенная на фиг. 10.1, представляется попросту двухполюсником. Следовательно, относительная «шумность» такой комбинации должна характеризоваться как относительной шумовой температурой, так и шумфактором. Согласно выражению (10.7), относительная шумовая температура комбинации усилителя и источника равна

С другой стороны, согласно определению шумфактора — равенству (10.11),

Следовательно, относительная шумовая температура комбинации источника и усилителя равна

где — относительная шумовая температура источника. Если шумовая температура источника имеет стандартное значение, то

так как

Средний шумфактор.

Средний шумфактор усилителя определяется как отношение полной мощности шума на выходе усилителя к той ее части, которая обусловлена только шумом источника. Полные мощности могут быть получены из дифференциальных мощностей интегрированием по частоте. Таким образом,

Если эффективная шумовая температура источника не зависит от частоты,

Средний стандартный шумфактор есть значение при эффективной шумовой температуре источника, равной на всех частотах Согласно равенству (10.216),

1
Оглавление
email@scask.ru