Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Раздел II. ОБЩАЯ ТЕОРИЯ СИСТЕМ СИГНАЛОВГлава 8. КОМБИНАТОРНЫЙ АНАЛИЗ СИСТЕМ СИГНАЛОВ8.1. Комбинаторика и теория систем сигналовВ § 1.1 системы сигналов были определены как совокупности сигналов, объединяемых единым алгоритмом построения. Другими словами, система сигналов — это подмножество некоторого множества сигналов, элементы которого (сигналы) выбираются из элементов множества в соответствии с принятым алгоритмом или правилом выбора (построения). В соответствии с классификацией, приведенной в § 1.2, 1.3, система — это подкласс некоторого класса сигналов. Исходным множеством является соответствующий класс сигналов, из которого производится выбор подкласса или системы. Большое значение в теории систем сигналов имеют исследования упорядочения сигналов системы, выбора сигналов при некоторых ограничительных условиях и т. д., т. е. исследования проблемы перечисления элементов конечного или счетного множества. В свою очередь эта проблема является основной проблемой комбинаторного анализа или комбинаторики [132]. Комбинаторика тесно связана с теорией вероятностей, высшей алгеброй и теорией чисел. Применение методов комбинаторики в теории систем сигналов позволяет определить объем системы сигналов, обладающей тем или иным свойством или ограничением. Для того, чтобы перейти к определению объема произвольной системы сигналов, напомним основные правила комбинаторики. Основные правила комбинаторики. Комбинаторика основана на априорных рассуждениях и следующих двух правилах, по своей природе являющихся определениями, которые «скорее нужно понимать, нежели доказывать» [132]. Правило суммы. Если объект А может быть выбран Правило произведения. Если объект А может быть выбран очередь может быть выбран Объем класса манипулированных сигналов. Проиллюстрируем применение одного из правил, а именно правила произведения, для нахождения объема класса манипулированных сигналов. Как следует из классификации манипулированных сигналов (§ 1.5), класс включает все сигналы данного рода с заданными основаниями манипуляций и заданными порядками. При конечных основаниях и порядках объем класса конечен, т. е. он содержит конечное число сигналов данного рода. Любая система сигналов является подклассом какого-нибудь класса или в предельном случае самим классом. Поэтому, если известны свойства класса, то могут быть известны и свойства системы сигналов. По этой причине, как уже было отмечено, класс является основной классификационной единицей и исследование свойств классов имеет большое значение. Исследование свойств классов и наиболее важных подклассов сигналов — цель данной книги. Допустим, что класс определяется
Формула (8.1) получена при использовании правила произведения. Действительно, если один параметр (объект) можно выбрать Если каждый элемент выбирается одним из
где Каждый класс манипулированных сигналов по определению содержит все сигналы с заданными основаниями манипуляции и заданными порядками. В теории кодирования классы называются полными кодами [111]. Если основание манипуляций класса
|
1 |
Оглавление
|