Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Глава 10. ПОЛНЫЙ ДВОИЧНЫЙ КОД10.1. Распределение корреляционных функцийПолный код с основанием манипуляции Исследование некоторых свойств полного кода можно найти в работах [37, 85, 110, 111, 121, 138, 160, 205, 229]. Интересные закономерности двоичных систем сигналов, близкие к свойствам полного кода, отмечены в работах [141, 142]. Периодические корреляционные функции. Положим, что двоичный алфавит является мультипликативной двоичной группой, т. е. состоит из символов 1 и — 1. Поэтому символы сумме (9.30) равно
причем
Число кодовых последовательностей, имеющих данный вес, т. е. заданное число 1, находится как число сочетаний из
Распределение (10.3) является биномиальным. Следует учитывать только, что вес изменяется с шагом, равным 2. Так как КФ и вес связаны соотношением (10.2), то распределение (10.3) однозначно определяет распределение КФ. Апериодические корреляционные функции. Распределение апериодических КФ можно найти, используя распределение (10.3). Апериодические КФ содержат число слагаемых
причем При
Здесь каждый столбец встречается один раз. Если отбросить верхнюю или нижнюю строку, что эквивалентно Помимо увеличения числа появления данного веса, с уменьшением Далее поступим следующим образом. Умножим значения После умножения каждого биномиального коэффициента на соответствующий множитель суммирование необходимо производить по столбцам, а полученные суммы разделить на На рис. 10.1, а вертикальными линиями показано распределение вероятностей
с дисперсией
(см. скан) Формула (10.7) позволяет достаточно просто учитывать боковые пики КФ при расчете характеристик СПИ со сложными сигналами. Значения вероятностей
раз, а для веса
Рис. 10.1 Аналогично можно получить аналитические представления и для других
|
1 |
Оглавление
|