Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Глава 12. Соотношение периметра и площадиДля окружностей, квадратов, равносторонних треугольников и других многоугольников отношение периметра к квадратному корню их охватываемой площади
не зависит от размера многоугольника. Отношение Для семейства подобных островов различных размеров отношение длины нефрактальной береговой линии любого острова к квадратному корню из его площади не зависит от размера острова. Однако, если береговая линия фрактальна, то ее длина
Здесь Соотношение периметра и площади, выраженное равенством (12.1), вытекает из определения фрактальной размерности
Рис. 12.1. Два подобных острова, обмеряемые с помощью эталона, длина которого зависит от площади острова. Теперь можно сделать важное замечание: для подобных островов
Выразим 5 через
и получим, что отношение
не зависит от размера острова. Однако это отношение
полученному Мандельбротом. Это соотношение удовлетворяется для любого эталона длины 8, достаточно малого, чтобы удовлетворительно обмерять самый малый из островов. Коэффициент пропорциональности лежит в основе практического определения фрактальной размерности в нескольких интересных случаях, обсуждаемых в последующих разделах. Чтобы привести пример соотношения периметра и площади, рассмотрим остров, ограниченный квадратичной кривой Кох (см. рис. 2.9). Первичным элементом кривой является квадрат со стороной а. Генератор кривой при замене каждой ее стороны добавляет малый «полуостров» и вырезает участок «побережья» такого же размера. Поэтому при повторных преобразованиях кривой не меняется охватываемая ею площадь Другой пример связан с триадной кривой Кох. Здесь под островом будем понимать участок плоскости, заключенный между начальным элементом, т. е. отрезком длины а, и предельной кривой Кох (см. рис. 2.8). Охватываемая площадь равна
Как видим, если пренебречь первым членом в правой части, то получится соотношение периметра и площади (12.2). Отброшенный член представляет собой нефрактальный прямой участок границы островов. Этот пример показывает, что соотношение периметра и площади (12.2) может быть справедливо только в пределе малой длины эталона 5, когда длина фрактальной части береговой линии преобладает над вкладом любой регулярной части береговой линии. Нетрудно построить более сложные примеры, в которых разные участки берега имеют разные фрактальные размерности. В этом случае анализ показывает, что отношение периметра и площади
|
1 |
Оглавление
|