Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
2.5. Подобие и скейлингПрямая-особое множество точек в пространстве: при любом изменении масштаба мы получим то же самое множество точек. Кроме того, произведя над прямой параллельный перенос, мы снова получим то же самое множество точек. Прямая инвариантна относительно параллельного переноса и изменения масштаба, или скейлинга, - можно сказать, что прямая самоподобна. Уточним наше утверждение. Зададим точки в пространстве их декартовыми координатами
Параметр
Здесь Как показывают аналогичные соображения, плоскость инвариантна относительно параллельных переносов в любом направлении, лежащем в ней самой, и относительно изменения масштабов длины. Наконец, трехмерное пространство инвариантно относительно параллельных переносов в любом направлении и относительно изменения масштабов длины. Другие множества точек не обладают столь прочными симметриями - инвариантностью относительно параллельных переносов и скейлинга. Окружность не инвариантна ни относительно параллельного переноса, ни относительно скейлинга, а инвариантна относительно поворотов вокруг собственного центра. Фракталы также не обладают свойствами некоторых или даже всех этих простых инвариантностей. Полезно рассмотреть ограниченные множества, такие, как конечный отрезок прямой. Отрезок прямой не обладает трансляционной симметрией - любой сдвиг его всегда порождает новое множество точек. Но если изменить длины в
Размерность подобия Рассмотрим теперь кривую Кох на рис. 2.8. С масштабным множителем
с размерностью подобия В общем случае размерность подобия
Для самоподобных фракталов размерность Хаусдорфа-Безиковича Размерность подобия легко поддается определению для различных фракталов, получающихся с помощью различных вариантов построения Кох. Рассмотрим предфрактал Кох, построенный с единичным квадратом в качестве затравки и с образующим элементом, состоящим из
Рис. 2.9. Построение квадратной кривой Кох. самоподобен, но, уменьшив всю кривую в Определяемое этим построением фрактальное множество имеет размерность Попытаемся теперь слегка изменить правила построения. Пусть при первом использовании образующего элемента середина образующего отрезка смещается влево. Каждое последующее поколение начинается с образующего элемента, смещенного вправо, а затем смещения середины вправо и влево чередуются. Несколько первых поколений и 11-е поколение показаны на рис. 2.11. Предельная фрактальная кривая называется драконом Хартера-Хейтуэя. Если сохранить правила построения треугольного невода, но воспользоваться при этом образующим элементом, изображенным на рис. 2.12, то получится самопересекающаяся кривая, заполняющая плоскость. 10-е поколение показано на рис. 2.12. (кликните для просмотра скана)
Рис. 2.12. Модифицированный треугольный невод, Образующий элемент разбивает единичный отрезок на две части, расположенные под прямым углом друг к другу. Длинный катет изменяется с масштабным множителем
В рассматриваемом случае
|
1 |
Оглавление
|