Главная > Введение в молекулярную физику и термодинамику
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 14. Соотношения Максвелла

Результаты § 11 — 13 можно кратко сформулировать следующим образом: имеются четыре характеристические функции:

определяемые следующими четырьмя дифференциальными выражениями:

Из (14.5), например, следует, что

Дифференцируя второй раз, получаем

сравнивая два последних выражения, находим

Таким же образом получаем из (14.6)

Из (14.7)

и, наконец, из (14.8)

Мы получили четыре соотношения Максвелла. Последние два выведены и использованы в § 9 и 10; они выражают зависимость энтропии от при постоянной температуре. Мы еще не встречались с первыми двумя соотношениями; они мало используются, так как они содержат дифференцирование по энтропии. Поэтому лучше записать их в обращенной форме:

Эти соотношения выражают зависимость энтропии от соответственно при постоянных V или и совершенно аналогичны соотношениям (14.11) и (14.12).

Продифференцируем (14.11) и (14.12) по замечая, что

тогда получим

При помощи этих двух выражений можно, измеряя изотермы газа, найти изменение его удельной теплоемкости при сжатии. Таким путем [а именно интегрируя выражения (14.13)] Михельс вычислил вклад, вносимый межмолекулярной энергией в теплоемкость (см. часть I, § 6). Между прочим, термодинамическое рассмотрение показывает, что уравнение Ваальса с постоянными a и b не позволяет найти вклад, вносимый межмолекулярной энергией в теплоемкость. Действительно, согласно этому уравнению, является линейной функцией от следовательно, теплоемкость не зависит от объема. Чтобы объяснить изменение мы должны учитывать зависимость а от температуры, что было неявно сделано в конце § 6 части

1
Оглавление
email@scask.ru