Главная > Теория сигналов (Френкс Л.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

7. ПРЕДСТАВЛЕНИЯ СЛУЧАЙНЫХ СИГНАЛОВ

7.1. ВВЕДЕНИЕ

Часто случается, что в физических системах некоторые из источников сигналов способны вырабатывать одну из большого (часто несчетного) множества возможных функций времени. Для удобства анализа полезно ввести вероятностный закон, описывающий случайные появления каждого элемента такого множества. Множество (вместе с законом вероятности) есть ансамбль сигналов, вырабатываемых источником. Мы будем говорить, что такой источник вырабатывает сигнал х, называемый случайным или стохастическим процессом. Описание случайного сигнального процесса должно быть совершенно отличным от описания точно известных, детерминированных сигналов. Однако некоторые из понятий, связанные с пространством сигналов (расстояние, норма, скалярное произведение, ортогональность), полезны и для описания случайных процессов.

В наиболее интересных задачах два способа описания (детерминированный и случайный) встречаются одновременно и жестко взаимосвязаны. В этом мы убедимся, рассматривая задачу оптимальной фильтрации в гл. 9, а также задачу нахождения оптимальных базисных функций для случайных сигналов, рассматриваемую далее в этой главе.

Более точно определим случайный процесс как совокупность случайных значений, каждое из которых относится к своему моменту времени:

Если Т — счетное множество, мы говорим, что х — процесс с дискретным временем, если Т — вещественный интервал, то процесс с непрерывным временем.

Важно заметить, что совокупность значений не следует трактовать как скалярную величину. Для большинства практических приложений случайные значения можно рассматривать как вектор в гильбертовом пространстве [1, 2]. При этом параметр просто отмечает точки в этом пространстве. Обычно, конструируя некоторую систему, мы интересуемся ее характеристиками для всего ансамбля сигналов, а не для отдельных реализаций, выбранных из этого ансамбля. Можно выявить «усредненные» характеристики системы, вычислив соответствующие статистические средние значения по отношению к исходным случайным переменным. Эти средние значения называются ожиданиями

Таким образом, в рассматриваемых задачах поведение случайного процесса во времени характеризуется поведением различных ожиданий как детерминированных функций времени, но не формой конкретного сигнала. В этом состоит существенное различие между описанием детерминированных и случайных сигналов. Игнорирование такого различия нередко приводит к ошибкам.

Мы предполагаем, что читатель знаком с основами теории вероятности и случайных процессов [3). Следующий параграф дает дишь сводку основных положений, которые будут использоваться в дальнейшем.

1
Оглавление
email@scask.ru