Главная > Основы аналитической химии, Т1
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

§ 6. Сильные и слабые электролиты

Различают сильные и слабые электролиты. Сильные электролиты в растворах практически диссоциированы полностью. К этой группе электролитов относится большинство солей, щелочей и сильных кислот. К слабым электролитам принадлежат слабые кислоты и слабые основания и некоторые соли: хлорид ртути (II), цианид ртути (II), роданид железа (III), иодид кадмия. Растворы сильных электролитов при больших концентрациях обладают значительной электропроводностью, причем она с разбавлением растворов возрастает незначительно.

Растворы слабых электролитов при больших концентрациях отличаются незначительной электропроводностью, сильно увеличивающейся при разбавлении растворов.

При растворении вещества в каком-либо растворителе образуются простые (несольватированные) ионы, нейтральные молекулы растворенного вещества, сольватированные (в водных растворах гидратированные) ионы (например, и т. д.), ионные пары (или ионные двойники), представляющие собой электростатически ассоциированные группы противоположно заряженных ионов (например, ), образование которых наблюдается в подавляющем числе неводных растворов электролитов, комплексные ионы (например, ), сольватированные молекулы и др.

В водных растворах сильных электролитов существуют только простые или сольватированные катионы и анионы. В их растворах нет молекул растворенного вещества. Поэтому неверно предполагать наличие молекул или наличие длительных связей между или и в водном растворе хлорида натрия.

В водных растворах слабых электролитов растворенное вещество может существовать в виде простых и сольватированных (-гидратированных) ионов и недиссоциированных молекул.

В неводных растворах некоторые сильные электролиты (например, ) диссоциированы не полностью даже при умеренно высоких концентрациях. В большинстве органических растворителей наблюдается образование ионных пар противоположно заряженных ионов (нодробнее см. книга 2).

В ряде случаев невозможно провести резкую границу между сильными и слабыми электролитами.

Межионные силы. Под действием межионных сил вокруг каждого свободно движущегося иона группируются, располагаясь симметрично, другие ионы, заряженные обратным знаком, образуя так называемую ионную атмосферу, или ионное облако, замедляющее движение иона в растворе.

Например, в растворе вокруг движущихся ионов калия группируются ионы хлора, а вблизи движущихся ионов хлора создается атмосфера из ионов калия.

Ионы, подвижность которых ослаблена силами межионного протяжения, проявляют в растворах пониженную химическую активность. Это вызывает отклонения в поведении сильных электролитов от классической формы закона действия масс.

Посторонние ионы, присутствующие в растворе данного электролита, также оказывают сильное влияние на подвижность его ионов. Чем выше концентрация, тем значительнее межионное взаимодействие и тем сильнее посторонние ионы влияют на подвижность ионов.

У слабых кислот и оснований связь водорода или гидроксила в их молекулах является в значительной степени не ионной, а ковалентной; поэтому при растворении слабых электролитов в растворителях, отличающихся даоюе большой диэлектрической проницаемостью, большая часть их молекул не распадается на ионы.

Растворы сильных электролитов отличаются от растворов слабых электролитов тем, что в них нет недиссоциированных молекул. Это подтверждается современными физическими и физико-химическими исследованиями. Например, исследование кристаллов сильных электролитов типа рентгенографическим путем подтверждает тот факт, что кристаллические решетки солей построены из ионов.

При растворении в растворителе с большой диэлектрической проницаемостью вокруг ионов образуются сольватные (в воде гидратные) оболочки, препятствующие их соединению в молекулы. Таким образом, поскольку сильные электролиты даже в кристаллическом состоянии не содержат молекул, они тем более не содержат молекул в растворах.

Однако экспериментальным путем найдено, что электропроводность водных растворов сильных электролитов не эквивалентна той электропроводности, которую молено было бы ожидать при -ной диссоциации молекул растворенных электролитов на ионы.

С помощью теории электролитической диссоциаций, предложенной Аррениусом, оказалось невозможным объяснить этот и ряд других фактов. Для их объяснения были выдвинуты новые научные положения.

В настоящее время несоответствие свойств сильных электролитов классической форме закона действия масс может быть объяснено при помощи теории сильных электролитов, предложенной Дебаем и Хюкке-лем. Основная идея этой теории заключается в том, что в растворах между ионами сильных электролитов возникают силы взаимного притяжения. Эти межионные силы вызывают отклонение поведения сильных электролитов от законов идеальных растворов. Наличие этих взаимодействий вызывает взаимное торможение катионов и анионов.

Влияние разбавления на межионное притяжение. Межионное притяжение вызывает отклонения в поведении реальных растворов аналогично тому, как межмолекулярное притяжение в реальных газах влечет за собой отступления их поведения от законов идеальных газов. Чем больше концентрация раствора, тем плотнее ионная атмосфера и тем меньше подвижность ионов, а следовательно, и электропроводность электролитов.

Подобно тому как свойства реального газа при низких давлениях приближаются к свойствам газа идеального, так и свойства растворов сильных электролитов при большом разбавлении приближаются к свойствам идеальных растворов.

Иными словами, в разбавленных растворах расстояния между ионами настолько велики, что испытываемое ионами взаимное притяжение или отталкивание чрезвычайно мало и практически сводится к нулю.

Таким образом, наблюдаемое увеличение электропроводности сильных электролитов при разбавлении их растворов объясняется ослаблением межионных сил притяжения и отталкивания, обусловливающим увеличение скорости движения ионов.

Чем менее диссоциирован электролит и чем более разбавлен раствор, тем меньше межионное электрическое влияние и тем меньше наблюдается отклонений от закона действия масс, и, наоборот, чем больше концентрация раствора, тем больше межионное электрическое влияние и тем больше наблюдается отклонений от закона действия масс.

По указанным выше причинам к водным растворам сильных электролитов, а также к концентрированным водным растворам слабых электролитов нельзя применять закон действия масс в его классической форме.

Categories

1
Оглавление
email@scask.ru