Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Главным сюжетом этой книги является бифуркация рождения предельного цикла из сложного фокуса конечномерной динамической системы. В своем предисловии к английскому изданию авторы отмечают, что эту бифуркацию следовало бы называть «бифуркацией Пуанкаре — Андронова — Хопфа», но они остановились на названии «бифуркации Хопфа», считая его более распространенным. У нас в стране указанной бифуркации посвящено довольно много работ и она связывается в первую очередь с именами Ляпунова и Андронова. Поэтому, с любезного согласия авторов, русское издание этой книги было решено назвать иначе. С именем А. Пуанкаре (1854-1912 гг.) связано открытие предельных циклов. Ему принадлежит метод разыскания предельных циклов, близких к кривым линейной консервативной системы. А. М. Ляпунов в работе «Общая задача об устойчивости движения» (1892 г.) дал метод исследования устойчивости (в смысле Ляпунова) сложных состояний равновесия динамической системы с чисто мнимыми характеристическими корнями и ввел величины, получившие впоследствии название «ляпуновских»- Заслуга открытия бифуркации рождения предельного цикла из состояния равновесия с чисто мнимыми характеристическими корнями при изменении параметров системы и обнаружение связи этой бифуркации с ляпуновскими величинами принадлежит А. А. Андронову. Еще в своем докладе «Математические проблемы автоколебаний», прочитанном на Всесоюзной конференции по колебаниям в 1931 году и опубликованном в книге «I Всесоюзная конференция по колебаниям» (М.-Л., ГТТИ, 1933 г.), А. А. Андронов, не выписывая формул, рассказал о бифуркации рождения предельного цикла из фокуса на плоскости, а также стягивания предельного цикла в фокус, в связи с адекватным математическим описанием мягкого возникновения автоколебаний в ламповом генераторе Но хотя все, что связано с бифуркацией появления периодического решения из состояния равновесия с двумя мнимыми корнями в случаях динамических систем второго, третьего и четвертого порядка, в работах советских авторов продвинуто значительно дальше, чем в предлагаемой книге, тем не менее она представляет несомненный интерес. Прежде всего, метод, использованный Хопфом (несколько отличный от использованного А. А. Андроновым), может оказаться полезным для решения ряда других задач (см., например, главу нение существенно опирается на теорему о центральном многообразии, изложенную в гл. 2. Несмотря на несколько эскизный характер изложения, все, касающееся этих задач, содержит много нового и отсутствует в монографиях. Отметим, в частности, пример с течением Куэтта, обсуждение концепции Рюэля и Такенса возникновения турбулентности, изложение (сделанное Чайльдсом) оригинальной работы Иосса, в которой рассматривается возникновение периодического течения из стационарного в некоторых задачах динамики жидкости. Представляет интерес сделанное Руизом изложение работ Кирхгесснера и Килхёффера, в которых рассматриваются модели Тейлора и Бенара течения жидкости и бифуркации в них. Последние три главы книги не имеют прямого отношения к. бифуркации рождения цикла. Они написаны известными американскими математиками (Смейлом и другими) и также содержат много интересного. Таким образом, хотя часть материала предлагаемой книги имеется в ряде советских изданий и хотя некоторые ее главы написаны очень бегло, эта книга, особенно в части приложений теории к самым разным задачам, представляет живой интерес. Мы надеемся, что ее русское издание привлечет внимание читателей к поискам новых приложений этой классической теории. В конце книги помещены три дополнения, которые, как нам кажется, будут полезны читателям: «Поведение динамических систем вблизи границ области устойчивости состояний равновесия и периодических движений» (Н. Н. Баутин и Л. П. Шильников), «Теория бифуркаций и модель Лоренца» (Л. П. Шильников), «Комментарии к теореме Хопфа» (E. А. Леонтович). В заключение мы хотим поблагодарить авторов, особенно проф. Дж. Марсдена, за проявленное ими внимание к подготовке русского издания их книги.
|
1 |
Оглавление
|