Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Известно, что интегральные кривые липшиц-непрерывного векторного поля однозначно определяются своими начальными условиями, но это неверно для некоторых непрерывных векторных полей ${ }^{1}$ ). С другой стороны, известно, что интег- для $x, y \in \mathcal{U}$ и $t \in\left[t_{0}-\varepsilon, t_{0}+\varepsilon\right]$. Здесь предполагается, что постоянная $C$ не зависит от $x, y$ и $t$ (другими словами, локальная константа Липшица предполагается локально ограниченной по $t$. Например, это выполняется для глобально липшиц-непрерывного потока). Заключение: если $c(t)$-кривая в $D$, такая, что $c^{\prime}(t)=$ $=X(c(t))$, то $c(t) F_{t}(c(0))$. Доказательство. Мы можем работать в локальной карте (см. (8A.13)), поэтому будем считать $M$ банаховым пространством $\mathbb{E}$. Для данного $t_{0}$ пусть $x_{0}=c\left(t_{0}\right)$. Выберем тогда $\varepsilon>0$ и окрестность $U$ точки $x_{0}$ из условия (б); в дополнение к этому $\varepsilon$ должно быть столь мало, чтобы $c(t) \in \mathcal{U}$ при $\left|t-t_{0}\right| \leqslant \varepsilon$. Определим $h(t)=F_{t_{0}-t} c(t)$. Тогда для $t$, близких к $t_{0}$, и малых $\tau$ Кроме того, $\left[c(t+\tau)-F_{\tau} c(t)\right] / \tau=[c(\mathrm{t}+\tau)-c(t)] / \tau+$ $+\left[c(t)-F_{\tau} c(t)\right] / \tau \rightarrow X(c(t))-X(c(t))=0$ при $\tau \rightarrow 0$. Tа- обще не нметь интегральных кривых с данными начальными условиями: $S(f)=d f / d x$ на $E=C^{\infty}$-функции на $[0,1]$, равные нулю вместе со всеми производными в точках 0 и 1. Результат (8A.11) существенно обобщается в работе Дорро и Марсдена [1]. ким образом, $h$ дифференцируема и $h^{\prime}(t) \equiv 0$. Отсюда следует, что $h(t)$ константа, т. е. $c(t)=F_{t-t} c\left(t_{0}\right)$ для $t$, близких к $t_{0}$. Отсюда легко следует соотношение $c(t)=F_{t} c(0)$. Доказательство. Проверим условие (б) предположения теоремы. Для локальной карты из наших результатов о совместной непрерывности (см. (8A.6)) следует, что $D F_{t}(x) y$ непрерывно совместно по $t, x$ и $y$. Следовательно, по теореме Банаха — Штейнхауса для данных $x_{0}$ и $t_{0}$ существуют выпуклая окрестность $\mathcal{U}$ точки $x_{0}$ и $\varepsilon>0$, такие, что $\left\|D F_{t}(x)\right\| \leqslant C$, если $x \in \mathcal{U}$ и $\left|t-t_{0}\right| \leqslant \varepsilon$. Тогда по теореме о среднем значении получаем, что $\left\|F_{t}(x)-F_{t}(y)\right\| \leqslant C\|x-y\|$, если $x, y \in$ $\in \mathcal{U}$ и $\left|t-t_{0}\right| \leqslant \varepsilon$. Эти результаты обобщают классические теоремы Кнезера и ван Қампена. Они легко обобщаются на полупотоки. Замечание. Существует хорошо известный пример непрерывного векторного поля с совместно непрерывным потоком, для которого заключение теоремы (8A.11) не выполняется. Пусть поле $X$ на $R$ задано выражением Определим $\varphi(y)=|y|^{3 / 2} \cdot \operatorname{sgn} y$. Тогда $\varphi$ дифференцируема и $\varphi^{\prime}(y)=\frac{3}{2}|y|^{1 / 2}$. Легко проверить, что $F_{t}(x)=\varphi\left(t+\varphi^{-1}(x)\right)$ является потоком для $X$. В частности, $F_{t}(0)=|t|^{3 / 2} \operatorname{sgn} t$. Но $c(t) \equiv 0$ — другая интегральная кривая, для которой $c(0)=$ $=0$. Другие примеры см. у Хартмана [1]. Определение. Пусть $N$ — банахово многообразие, моделью которого служит банахово пространство $\mathbb{E}$. Пусть $d$-метрика на $N$. Скажем, что $d$ совместима со структурой $N$, если $d$ задает топологию $N$ и если для любого $x_{0} \in N$ существует карта $(\mathcal{U}, \varphi)$, содержащая $x_{0}$ и постоянные $\boldsymbol{\alpha}\left(x_{0}\right), \boldsymbol{\beta}\left(x_{0}\right)$, такие, что для всех $x, y \in \mathcal{U} d(x, y) \leqslant \alpha\|\varphi(x)-\varphi(y)\| \leqslant$ $\leqslant \beta d(x, y)$. непрерывно, и тогда для доказательства единственности интегрируют его. Напомним, как это делается. Пусть $X$ — локально липшиц-непрерывное векторное поле в $\mathbb{R}^{n}$ (или любом банаховом пространстве). Пусть $d(t)$ и $c(t)$ — две любые интегральные кривые поля $X$ и $d(0)=c(0)$. Тогда Затем применяют тот факт (называемый неравенством Гронуолла), что если $\alpha$ удовлетворяет неравенству $\alpha(t) \leqslant$ $\leqslant \int_{0}^{t} K \alpha(s) d s, \quad$ то $\alpha(t) \leqslant \alpha(0) e^{K t}$. Поэтому получаем $d(t) \equiv$ $\equiv c(t)$. Для уравнений с частными производными, однако, важно иметь результат, установленный в (8A.11), так как часто бывает возможно найти константу Липшица для построенного потока, но редко — для порождающего векторного поля. где $K$ локально ограничена по $t$. Тогда, как в замечании 2 , мы можем заключить, что $X$ имеет единственную интегральную кривую. Этот метод прямо применим, например, к классическим решениям уравнений Эйлера и Навье — Стокса.
|
1 |
Оглавление
|