Главная > БИФУРКАЦИЯ РОЖДЕНИЯ ЦИКЛА И ЕЕ ПРИЛОЖЕНИЯ (ДЖ. МАРСДЕН, М. МАК-КРАКЕН)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Как мы уже видели в предыдущих главах, в нашем распоряжении имеются, вообще говоря, два метода доказательства бифуркационных теорем. Первый — это исходный метод Хопфа, а второй — использование техники инвариантного многообразия для сведения задачи к конечномерному (часто двумерному) случаю.

Для уравнений с частными производными, таких, как уравнения Навье -.Стокса (см. гл. 1), теоремы в том виде, как они были сформулированы Хопфом (см. гл. 5) или Рюэлем и Такенсом (см. гл. 3,4 ) неприменимы, о чем уже говорилось. Трудность здесь состоит в том, что векторные поля, порождающие потоки, обычно негладкие функции на любом разумно выбранном банаховом пространстве.

И все же метод Хопфа может быть использован для уравнений с частными производными при условии, что уравнения имеют определенный «параболический» тип. Это было сделано Юдовичем [11], Иоссом [3], Джозефом и Сэттинджером [1] и другими ${ }^{1}$ ). В частности, эти методы применимы к уравнениям Навье — Стокса. Полученный здесь результат состоит в том, что при выполнении спектральных условий теоремы Хопфа периодическое решение действительно рождается и, более того, применим анализ устойчивости, данный ранее. Главное предположение, необходимое для этого метода это аналитичность решения по $t$.

Здесь мы хотим кратко остановиться на другом методе получения подобных результатов. Фактически предыдущие разделы были написаны таким образом, чтобы сделать этот метод совершенно ясным: вместо использования гладкости порождающего векторного поля или $t$-аналитичности решения мы использовали гладкость потока $F_{t}^{\mu}$. Нам кажется, что это дает технические преимущества при рассмотрении следующей бифуркации рождения инвариантного тора. Аналитичности по $t$ недостаточно для работы с отображением Пуанкаре периодического решения (см. гл. 2B).
‘) См. также Колесов [1],-Прим, перев.

Полезно заметить, что существуют общие результаты, применимые к конкретным эволюционным уравнениям с частными производными, которые позволяют определять гладкость их потоков на соответствующим образом выбранных банаховых пространствах. Эти результаты получены в работе Дорро и Марсдена [1]. Для удобства читателя в главе 8A мы приведем нужные для дальнейшего части этой работы, а также некоторые полезные теоретические сведения по этому вопросу.

Мы сначала сформулируем результаты в общем виде, а затем (в гл. 9) опишем, как эту процедуру можно эффективно применить для уравнений Навье — Стокса. Одновременно мы установим основные результаты, касающиеся существования, единственности и гладкости для уравнений Навье — Стокса, используя метод Като — Фуджиты [1] и результаты Дорро и Марсдена [1] (гл. 8A).

Следует отметить, что и для уравнений с частными производными, отличных от уравнений Навье — Стокса, бифуркационные задачи встречаются весьма часто; например, при изучении химических реакций (см. Коппель и Ховард.[1,2, 5]) и в динамике популяций (см. гл. 10). Задачи из других областей, таких, как теория электрических цепей и теория упругости, вероятно, того же типа (см. Стерн [1], Зиглер [1] и Кнопс и Уилкс [1]). Похоже, что настоящая сила методов теории бифуркаций только начинает реализовываться в приложениях.

1
Оглавление
email@scask.ru