Главная > БИФУРКАЦИЯ РОЖДЕНИЯ ЦИКЛА И ЕЕ ПРИЛОЖЕНИЯ (ДЖ. МАРСДЕН, М. МАК-КРАКЕН)
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

Как мы уже видели в предыдущих главах, в нашем распоряжении имеются, вообще говоря, два метода доказательства бифуркационных теорем. Первый – это исходный метод Хопфа, а второй – использование техники инвариантного многообразия для сведения задачи к конечномерному (часто двумерному) случаю.

Для уравнений с частными производными, таких, как уравнения Навье -.Стокса (см. гл. 1), теоремы в том виде, как они были сформулированы Хопфом (см. гл. 5) или Рюэлем и Такенсом (см. гл. 3,4 ) неприменимы, о чем уже говорилось. Трудность здесь состоит в том, что векторные поля, порождающие потоки, обычно негладкие функции на любом разумно выбранном банаховом пространстве.

И все же метод Хопфа может быть использован для уравнений с частными производными при условии, что уравнения имеют определенный «параболический» тип. Это было сделано Юдовичем [11], Иоссом [3], Джозефом и Сэттинджером [1] и другими ${ }^{1}$ ). В частности, эти методы применимы к уравнениям Навье – Стокса. Полученный здесь результат состоит в том, что при выполнении спектральных условий теоремы Хопфа периодическое решение действительно рождается и, более того, применим анализ устойчивости, данный ранее. Главное предположение, необходимое для этого метода это аналитичность решения по $t$.

Здесь мы хотим кратко остановиться на другом методе получения подобных результатов. Фактически предыдущие разделы были написаны таким образом, чтобы сделать этот метод совершенно ясным: вместо использования гладкости порождающего векторного поля или $t$-аналитичности решения мы использовали гладкость потока $F_{t}^{\mu}$. Нам кажется, что это дает технические преимущества при рассмотрении следующей бифуркации рождения инвариантного тора. Аналитичности по $t$ недостаточно для работы с отображением Пуанкаре периодического решения (см. гл. 2B).
‘) См. также Колесов [1],-Прим, перев.

Полезно заметить, что существуют общие результаты, применимые к конкретным эволюционным уравнениям с частными производными, которые позволяют определять гладкость их потоков на соответствующим образом выбранных банаховых пространствах. Эти результаты получены в работе Дорро и Марсдена [1]. Для удобства читателя в главе 8A мы приведем нужные для дальнейшего части этой работы, а также некоторые полезные теоретические сведения по этому вопросу.

Мы сначала сформулируем результаты в общем виде, а затем (в гл. 9) опишем, как эту процедуру можно эффективно применить для уравнений Навье – Стокса. Одновременно мы установим основные результаты, касающиеся существования, единственности и гладкости для уравнений Навье – Стокса, используя метод Като – Фуджиты [1] и результаты Дорро и Марсдена [1] (гл. 8A).

Следует отметить, что и для уравнений с частными производными, отличных от уравнений Навье – Стокса, бифуркационные задачи встречаются весьма часто; например, при изучении химических реакций (см. Коппель и Ховард.[1,2, 5]) и в динамике популяций (см. гл. 10). Задачи из других областей, таких, как теория электрических цепей и теория упругости, вероятно, того же типа (см. Стерн [1], Зиглер [1] и Кнопс и Уилкс [1]). Похоже, что настоящая сила методов теории бифуркаций только начинает реализовываться в приложениях.

Categories

1
Оглавление
email@scask.ru