Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Будем рассматривать систему эволюционных уравнений общего вида где $X_{u}$ — зависящий от параметра $\mu$ плотно определенный нелинейный оператор ${ }^{1}$ ) на подходящем функциональном пространстве $E$ (банаховом пространстве). Например, $X_{\mu}$ может быть оператором Навье — Стокса, а $\mu$ — числом Рейнольдса (см. гл. 1). Предполагается, что эта система определяет единственное локальное решение $x(t)$ и, следовательно, полупоток $F_{t}$, который при фиксированном $\mu$ и $t \geqslant 0$ отображает $\boldsymbol{x}(0)$ в $\boldsymbol{x}(t)$. Самым существенным, что необходимо знать относительно потока $F_{t}$ нашей системы, является тот факт, что при любых фиксированных $t$ и $\mu$ поток $F_{t}$ будет $C^{\infty}$-отображением банахова пространства $E$ ( $F_{t}$, вообще говоря, определен только локально по $t$ ). Отметим (см. конец гл. 8A) те свойства, которыми в большинстве случаев обладает $F_{t}$ и которые поэтому будем считать выполненными: Сделаем два важных предположения относительно потока. Первое из них таково. Это как раз то, что мы будем понимать под гладкой полугруппой. Конечно, мы не требуем гладкости по $t$, так как, вообще говоря, образующая $X_{\mu}$ для $F_{t}$ будет только плотно определенным, а не гладким отображением $E$ в $E$. Однако, как разъясняется в главе $8 \mathrm{~A}$, не совсем глупо ожидать гладкости по $\mu$ и $t$ при $t>0$ (что является нелинейным аналогом «аналитических полугрупп» и имеет место для уравнений «параболического типа»). Это нам потребуется ниже. В гл. 9 мы опишем вкратце, как можно проверить это предположение для уравнений Навье — Стокса, используя общий критерий, применимый к широкому классу систем (для систем, подобных нелинейным волновым уравнениям, это хорошо известно из работ Сегала [1] и других). Это просто означает, что наша теорема существования для $F_{t}$ достаточно сильна, чтобы гарантировать следующее: орбита может быть не определена только тогда, когда она за конечное время уходит на бесконечность. Такое предположение в большинстве случаев выполняется (в частности, для уравнений Навье — Стокса). Предположим, что $F_{t}$ имеет неподвижную точку, которой можно считать точку $O \in E$, т. е. $F_{t}(0)=0$ при всех $t \geqslant 0$. Обозначим через $D F_{t}$ производную Фреше отображения $F_{t}$ при фиксированном $t$; тогда ясно, что $G_{t}=D F_{t}(0)$ является линейной полугруппой на $E$. Ее производящий оператор, который формально равен $D X(0)$, является поэтому плотно определенным замкнутым линейным оператором, который определяет линеаризованное уравнение ${ }^{1}$ ). Нижеследующее предположение касается спектра линейной полугруппы $G_{t}$, который при соответствующих условиях (Хилле и Филлипс [1]) является экспоненциалом спектра $D X(0)$ (сравните с гл. 2A). При этих условиях имеет место рождение периодических орбит. Они будут устойчивы при следующем условии. Эта процедура может быть применена прямо к векторному полю $X$, поскольку вычисления конечномерны; неограниченность образующей $X$ не вносит дополнительных трудностей.
|
1 |
Оглавление
|