Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
Наше доказательство теоремы Хопфа нетрудно приспособить к случаю, когда действительная часть собственного значения не удовлетворяет условию $\alpha^{\prime}(0) Воспользуемся той же самой нормальной формой, которая ранее использовалась в уравнении (3C.2), и для простоты предположим, что $\varphi_{1}$ и $\varphi_{2}$-аналитические функции своих переменных. Будем считать, что предварительно нелинейным преобразованием исключены смешанные квадратичные члены, содержащие $y_{1}$ или $y_{2}$ и компоненты $\tilde{y}$. Этого можно добиться методом, аналогичным тому, который используется при биркгофовской нормализации гамильтоновых систем, т. е. с помощью преобразования вида (см. гл. 6A) Если потребовать, чтобы в новых переменных уравнения не содержали членов, упомянутых выше, то это позволяет однозначно найти ( $n-2$ )-мерные комплексные векторы $\alpha$ и $\beta$, так как матрица в системе (3C.2) не имеет при малых $\mu$ собственными значениями ни 0 , ни $2 i$. Нам необходимо знать квадратичные и кубичные по $y_{1}, y_{2}$ члены функции $\varphi_{1}$, т. е. Многоточие означает либо члены, содержащие только $\hat{y}$, либо члены более высокого порядка. Коэффициенты, конечно, зависят от параметра $\mu$, и мы можем записать $a=a(\mu)=$ $=a_{0}+a_{1} \mu+O\left(\mu^{2}\right)$ и аналогично для других коэффициентов. В переменных $\theta, r, \eta$ самое важное уравнение — это уравнение для $r$, и оно записывается в виде Введем масштабный множитель и получим где Многоточием в функциях $R_{0}, R_{1}, R_{2}$ обозначены члены, содержащие $\eta$. Так как $\eta=0\left(\varepsilon^{2}\right)$, то эти члены несущественны при отыскании уравнения разветвления $2 \pi$-периодических решений, которое имеет ту же форму, что и ранее, и записывается в виде При вычислении этого интеграла сразу видно, что отсутствует постоянный член. Тем не менее следует обратить внимание на интегрирование $R_{0}$, так как оно дает вклад в член с $\boldsymbol{\varepsilon}^{2}$ вследствие вида решения для $\rho$ : Благодаря предварительно проведенному преобразованию переменные $\eta$ в $R_{0}$ входят квадратично, и поэтому они вносят вклад только в члены высшего порядка по $\varepsilon$ и $\mu_{1}$. Интегрирование приводит нас к следующему уравнению разветвления: Теорема о неявной функции позволяет нам получить следующий результат: если $u^{\prime \prime}(0) \operatorname{Re}\left\{\beta_{0}+i a_{0} b_{0}\right\}<0$, то существуют два различных решения приведенного выше уравнения разветвления, имеющих вид $\mu_{1}=0(\varepsilon)$. Эти решения соответствуют двум семействам периодических орбит, рождающихся из состояния равновесия. В случае $u^{\prime \prime}(0) \operatorname{Re}\left\{\beta_{0}+i a_{0} b_{0}\right\}>0$ таких решений нет. Наконец, если дискриминант равен нулю, то необходимо учитывать члены более высокого порядка, чтобы выяснить, какой случай здесь имеет место. В случае $u(0)=$ $=u^{\prime}(0)=\ldots=u^{(n-1)}(0)=0, u^{(n)}(0) Обозначим $D=u^{(n)}(0) \operatorname{Re}\left\{\beta_{0}+i a_{0} b_{0}\right\}$. Если $n$ нечетно и $D Этот результат очень близок к результату Чейфи [1], который обсуждался в гл. 3А. (См. также Такенс [1].) [4]
|
1 |
Оглавление
|