Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
18. Решение ШварцшильдаУравнения Эйнштейна для пустого пространства представляют собой очень сложные нелинейные уравнения, и нахождение их точных решений является весьма трудной задачей. Однако в одном специальном случае решение находится без особых усилий, а именно: в случае статического сферически-симметричного поля, создаваемого покоящимся сферически-симметричным телом. Условие статичности означает, что в статической координатной системе
где U, V и W зависят только от
где v и
Далее находим
Теперь необходимо выразить через
где штрих означает дифференцирование по
(остальные компоненты Эйнштейновский закон гравитации требует, чтобы эти выражения обращались в нуль. Обращение в нуль (18.2) и (18.3) дает
При больших
Из обращения в нуль (18.4) следует, что
или
Отсюда
где
Для больших значений Полное решение уравнений Эйнштейна имеет вид
Оно известно под названием решения Шварцшильда и применимо вне тела, создающего гравитационное поле, т.е. в области, где отсутствует материя. Таким образом, это уравнение с приемлемой точностью справедливо вне поверхности звезды. Для движения планет вокруг Солнца решение (18.6) дает малые поправки к ньютоновской теории. Они ощутимы только для Меркурия — ближайшей к Солнцу планеты — и объясняют отклонение траектории этой планеты от траектории, предсказываемой теорией Ньютона. Это является убедительным подтверждением эйнштейновской теории.
|
1 |
Оглавление
|