Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА 5. АНАЛИЗ УСТОЙЧИВОСТИ СИСТЕМ РАДИОАВТОМАТИКИ§ 5.1. ПОСТАНОВКА ЗАДАЧИ УСТОЙЧИВОСТИУстойчивость линейной системы определяется ее характеристиками и не зависит от действующих воздействий. Процессы в системах РА описываются дифференциальными уравнениями вида
где Решение уравнения (5.1) состоит из двух составляющих:
где Система РА устойчива, если переходная составляющая решения стремится к нулю. Это означает, что если система выведена из состояния равновесия каким-либо возмущением, то она возвращается в исходное состояние после устранения этого возмущения. Переходная составляющая решения уравнения (5.1) зависит от корней характеристического уравнения, которое получают из выражения (5.1), приравнивая левую часть нулю:
Переходная составляющая решения
где Действительному корню характеристического уравнения
Рис. 5.1. К пояснению устойчивости системы РА: а - переходные составляющие для вещественных корней: б — пары комплексно-сопряженных корней; в — пары мнимых корней Паре комплексно-сопряженных корней уравнения (5.3) соответствует слагаемое
где При этом переходная составляющая стремится к нулю, если вещественные части корней отрицательны, в противном случае амплитуда колебаний переходной составляющей непрерывно возрастает (рис. 5.1,б). Пара мнимых корней характеристического уравнения позволяет получить переходную составляющую в виде колебаний с постоянной амплитудой (рис. 5.1, б):
Таким образом, для устойчивости системы РА необходимо и достаточно, чтобы все корни характеристического уравнения имели отрицательные знаки, или эти корни на плоскости комплексного переменного были расположены слева от мнимой оси. Только при этом все слагаемые в выражении (5.4) будут стремиться к нулю. Если корни характеристического уравнения расположены на мнимой оси, то система РА находится на границе устойчивости. При этом возможны два случая: корень в начале координат и пара мнимых корней. Нулевой корень появляется, когда свободный член характеристического уравнения равен нулю. Если остальные корни этого уравнения отрицательные, то система РА устойчива не относительно выходного сигнала, а относительно его производной, выходной сигнал в установившемся режиме имеет произвольное значение. Такие системы называют нейтрально устойчивыми. В том случае, когда характеристическое уравнение имеет пару мнимых корней, границу устойчивости называют колебательной. В большинстве случаев корни характеристического уравнения системы вычислить невозможно, поэтому были разработаны правила (критерии), позволяющие судить о расположении корней на плоскости комплексного переменного без их расчета. Прежде чем воспользоваться для оценки устойчивости тем или иным критерием, следует проверить выполнение необходимого условия устойчивости, в соответствии с которым все коэффициенты характеристического уравнения (5.1) должны быть больше нуля. Для доказательства этого положения представим уравнение (5.1) в виде
Если система устойчива, т. е. все корни
|
1 |
Оглавление
|