4.2. Оптимальные демодуляторы ЧМ при ограничении по порогу
Для нас представляют интерес вопросы синтеза трех фильтров в составе демодулятора рис. 4.1 и получающиеся среднеквадратические ошибки. Так как мы используем линейную модель, задача решается непосредственным применением теории оптимальной линейной фильтрации, которая была изложена в гл. 6 первого тома и использовалась ранее для синтеза ФАПЧ в гл.
Рис. 4.5. Вспомогательная структурная схема для использования при синтезе фильтров.
Для упрощения процедуры синтеза модель демодулятора можно перечертить, как показано на рис. 4.5. Заметим, что эта структурная схема построена ради простоты анализа и окончательная схема все равно является системой с обратной связью.
Сигнал на входах всех трех фильтров записывается в виде
где подстрочный индекс «то» указывает, что не является физическим колебанием, а существует лишь в нашей модели. Нам предстоит вначале определить передаточные функции двух реализуемых фильтров (подстрочный индекс означает «оптимальная по сообщению») и а также одного нереализуемого фильтра Затем из формул, приведенных в блоках структурной схемы рис. 4.5, можно найти передаточные функции тех фильтров, которые действительно представляют практический интерес. Если идти по другому пути и использовать метод переменных состояния, то можно одновременно найти передаточные функции двух реализуемых фильтров.
Существует три метода, которые можно использовать для получения требуемых результатов. Они рассмотрены в следующих трех параграфах.