Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 1. Модель ЛоренцаМодель Лоренца появилась в результате целенаправленного поиска некоторых модельных уравнений, которые имели бы непериодические решения стохастического типа. Идея Лоренца заключалась в использовании таких решений для долгосрочного прогноза погоды. Стохастическая динамика, как мы уже знаем, делает бессмысленным какие-либо предсказания на времена, большие времени размешивания. Непредсказуемость обусловлена локальной неустойчивостью траекторий и существованием реальных конечных неточностей в определении начальных условий. Однако макроскопическая динамика усредненных величин на больших временах, сравнимых, например, со временем диффузии, вполне предсказуема (ком. 1).
Рис. 11.1. Модель двумерной конвекции Уравнения модели Лоренца. Физическим процессом, лежащим в основе модели Лоренца, является двумерная тепловая конвекция (рис. 11.1). Она развивается в результате подогревания нижнего слоя под действием градиента температуры и силы тяжести. Подогретая у нижней пластинки жидкость становится легче. Ее вытесняет вверх более холодная и потому более тяжелая жидкость (архимедова сила). Далее холодная жидкость, попав вниз, подогревается; теплая, поднявшись вверх, охлаждается. Процесс конвекции описывается двумя уравнениями — уравнением для функции тока
Здесь Рэлей рассмотрел возмущения в системе (1.1) в виде
где
такое, что если
то возмущения
Естественно, что весь этот анализ проводился в линейном приближении, и центральный вопрос заключается в том, что представляет собой динамика системы в результате развития неустойчивости. На этот вопрос можно ответить, пользуясь только нелинейной системой, а точнее, — какой-либо разумной аппроксимацией уравнений (1.1). Используя результаты Зальцмана, Лоренц получил аппроксимирующие уравнения следующим образом. Представим
где
и называется системой Лоренца. В ней точка означает дифференцирование по безразмерному времени
Физический смысл переменных Фазовое пространство системы (1.6) трехмерно, и она имеет число степеней свободы
Отсюда видно, что объем фазовой жидкости стремится к нулю экспоненциально с показателем
Кроме того, второе равенство в (1.7) также указывает на сжимаемость фазовой жидкости. Если при этом траектории не выходят из сжимающегося объема, то существует некоторое предельное множество — аттрактор — с нулевым фазовым объемом, к которому притягиваются траектории при
(рис. 11.2). Значение Линеаризация. Система Лоренца зависит от нескольких параметров, и поэтому исследование ее динамики является достаточно сложной задачей. Тем не менее усилиями многих исследователей стало ясно, как возникает стохастический аттрактор. Эти результаты начинаются с работы самого Лоренца. Простейшая операция, с которой следует начать, заключается в определении критических точек в фазовом пространстве. Линеаризация системы (1.1) в окрестности стационарного решения
При
все корни
Рис. 11.2. Траектория на с тохастическом аттракторе Лоренца при
Рис. 11.3. Устойчивый аттрактор в начале координат
Рис. 11.4. Два устойчивых и одно неустойчивое положения равновесия Однако при Переход через
Последовательность бифуркаций. В точке
Рис. 11.5. Появление спиралей при При Дальнейший рост При Аттрактор Лоренца. Две устойчивые точки в центрах спиралей превращаются в неустойчивые. В результате при
Рис. 11.6. Образование гомоклинической траектории при
Рис. 11.7. Траектории аттрактора Лоренца Если не быть слишком точным в определениях, то можно сказать, что любая траектория спустя какое-то время притягивается и «садится» на некоторую область в фазовом пространстве. Область устроена сложно и имеет канторову структуру. Движение на ней является стохастическим (точнее, в очень малой окрестности вблизи этой области, так как она является предельной для траектории). Описанная предельная область и является аттрактором Лоренца. Исследование модели Лоренца показало, прежде всего, что новое понятие стохастического аттрактора может быть связано с понятием турбулентности. Действительно, модель Лоренца слишком проста, для того чтобы не ожидать стохасгичности в значительно более сложных системах. Кроме того, бифуркационный анализ ее показал, что иногда существует реальная возможность построить «бифуркационное дерево», указывающее последовательность различных метаморфоз с решениями в пространстве параметров системы. Таким образом, казалось бы, можно искать путь появления турбулентности, или, иначе, построить сценарий ее развития. Мы еще остановимся, на этом вопросе более подробно в конце главы. Здесь лишь отметим главную особенность модели Лоренца, значительно ограничивающую возможности ее сравнения с реальными экспериментальными данными. Она связана, конечно, с обрезанием системы уравнений. Задача с очень большим числом степеней свободы заменена задачей с минимальным их числом. Волновое число фактически входит в систему Лоренца как параметр. Тем самым исключаются из рассмотрения всевозможные структурные элементы движения жидкости. В действительности эта сторона динамики чрезвычайно богата [10], и мы приведем в следующем параграфе небольшую информацию о структурной эволюции конвекции при переходе к турбулентности (ком. 3).
|
1 |
Оглавление
|