Главная > Спектральный анализ и его приложения. Выпуск 1
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

2.2.3. Ряды Фурье как преобразования Фурье

Рассмотрим преобразование Фурье следующего сигнала:

который является «периодическим» сигналом в интервале Непосредственно используя (2.1.24), получаем, что его преобразование Фурье равно

Когда Т стремится к бесконечности, сигнал становится действительно периодическим сигналом s(t) (периодическим для всех моментов времени), в то время как преобразование стремится к

поскольку каждый из членов внутри фигурных скобок в (2.2.11) является последовательностью, сходящейся к дельта-функции. Поэтому преобразование Фурье действительно периодической косинусоидальной волны (бесконечного протяжения) состоит из дельтафункции амплитуды сосредоточенной в и дельтафункции амплитуды сосредоточенной в

Аналогично комплексный сигнал

имеет преобразование Фурье

Поэтому, когда стремится к Отсюда следует, что периодический сигнал с периодом представляемый рядом Фурье

имеет преобразование Фурье

которое представляет собой ряд, состоящий из дельта-функций. Таким образом, допуская обобщенные функции, ряды Фурье можно рассматривать как частный случай преобразований Фурье.

Для того чтобы найти коэффициенты Фурье соответствующие некоторой обобщенной функции, уже нельзя применять классическую формулу (2.1.18), так как обобщенная функция может оказаться неинтегрируемой в конечных пределах. Соответствующая формула, которую нужно использовать в таких случаях, приводится в [1].

В частности, можно показать, что преобразованием Фурье ряда, состоящего из дельта-функций

является

Таким образом, ряд из дельта-функций переходит в ряд также из дельта-функций. Отметим, что этот результат симметричен по отношению к частотной и временной областям.

Ряд, состоящий из дельта-функций, не является единственной функцией, симметричной относительно преобразования Фурье. Более простая функция, обладающая этим свойством, дается примером 2 в табл. 2.5 при Таким образом, преобразуется в

В этом месте читатель должен убедиться, что он хорошо знаком с различными операторными свойствами преобразований Фурье, которые резюмированы в приложении

1
Оглавление
email@scask.ru