Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
5.1.5. Анализ систем на основе критерия минимума среднеквадратичной ошибкиВ предыдущих разделах обсуждены простые способы описания временных рядов с помощью их младших моментов. Важнейшим из этих моментов является корреляционная функция. Одно из многих применений корреляционной функции состоит в том, что она служит источником исходных идей при построении вероятностной модели механизма, породившего временной ряд. В следующей главе будет показано, что временной ряд можно описать совершенно эквивалентным образом с помощью его спектральной плотности, являющейся преобразованием Фурье от ковариационной функции. Широкое применение ковариационной функции или спектральной плотности в технических задачах основано на том, что знание любой из этих функций достаточно для синтеза линейных фильтров или линейных систем регулирования с минимальной среднеквадратичной ошибкой для случаев, когда рассматриваемые сигналы искажаются шумом. Теория синтеза систем с минимальной среднеквадратичной ошибкой была впервые разработана Винером [4]. Она сыграла важную роль в развитии современной теории управления и теории связи. Синтез следящих систем. Одно из первых инженерных применений анализа на основе критерия минимума среднеквадратичной ошибки было сделано при синтезировании следящих систем для зенитных орудий и в радиолокационных следящих системах [5]. Например, от радиолокационной следящей системы требуется, чтобы она следила за самолетом несмотря на возмущения отраженного радиосигнала, обусловленные вариациями полного коэффициента отражения из-за вращения пропеллера, вибрации моторов и изменений относительного положения самолета, вызванных рысканием и покачиванием во всех направлениях. Понятно, нельзя ожидать от следящей системы, чтобы она сопровождала самолет абсолютно точно при таких неблагоприятных условиях. Следовательно, нужно было бы исследовать характеристику работы системы в среднем и ее вероятный разброс, а не точную характеристику. Один из способов описания этих свойств использует среднеквадратичную ошибку между желаемым и действительным выходными сигналами системы. В свою очередь, среднеквадратичную ошибку можно выразить через ковариационную функцию входного и желаемого выходного сигналов. Поэтому знание ковариационных функций достаточно для синтеза систем с минимальной среднеквадратичной ошибкой. Оценивание отклика линейной системы на единичный импульс. Другое применение критерий минимума среднеквадратичной ошибки находит в задаче об «идентификации системы». В этом случае в распоряжении имеются входной сигнал и соответствующий ему выходной сигнал от некоторой системы; требуется вывести линейное приближение к этой системе для дальнейшего его использования при управлении или моделировании. Предположим, например, что система представляет собой «черный ящик» (рис. 5.7). Если вход является реализацией случайного процесса
Равенство (5.1.10) утверждает, что выход можно рассчитать, беря взвешенное среднее от входного сигнала, причем весовая функция должна равняться Если ковариационные функции процессов
Целесообразность использования критерия (5.1.11) мы обсудим полнее в разд. 5.3.1, где будет рассмотрена задача идентификации системы по записям конечной длины. Если предположить, что процессы
Рис. 5.7. Определение отклика на единичный импульс на основе минимума среднеквадратичной ошибки.
где
есть взаимная ковариационная функция между
есть автоковариационная функция Отсюда среднеквадратичная ошибка полностью определяется ковариационными функциями Функцию
Заметим, что Основная мысль этого раздела заключается в том, что линейная система, дающая наилучшую аппроксимацию к данному процессу, полностью определяется ковариационными функциями
|
1 |
Оглавление
|