Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 5.6. Масса покоя системы. Энергия связи.До сих пор рассматривалась механика «частицы», т. е. поведение некоторого единого целого. Однако «элементарпость» (неразложимость) частицы нигде фактически не предполагалась, и поэтому можно перенести все выводы на сложные системы, состоящие из «подсистем». Масса покоя М сложной системы определяется согласно общей формуле (5.50) так:
где теперь уже Е — полная энергия системы, Ограничимся пока простейшим случаем систем, состоящих из отдельных частиц. Допустим сначала, что частицы не взаимодействуют между собой. Тогда энергия системы — это просто сумма энергий частиц, образующих систему:
Аддитивность энергии как раз и характеризует отсутствие взаимодействия. Полный импульс системы всегда векторно складывается из импульсов отдельных частиц, т. е. аддитивен всегда:
Масса покоя системы в этом случае может быть записана в виде
Чтобы пайти, как связана масса покоя системы с массами покоя частиц, образующих систему, проще всего перейти в систему отсчета, в которой полный импульс системы равен нулю:
Мы видим, что масса покоя системы выражается как сумма эпергий отдельных частиц (деленная на
Тогда по (5.63) мы получим
Из (5.66) вытекает существенный результат: масса нокоя системы превосходит сумму масс покоя составляющих ее отдельных частиц на величину полной кинетической энергии этих частиц (деленную на Таким образом, мы приходим к выводу, что в релятивистской механике даже для системы из невзаимодействующих частиц масса покоя не является аддитивной величипой. Такое свойство массы пепривычно с точки зрения классической механики. Возникает соблазн ввести иную массу отдельных частиц таким образом, чтобы масса покоя системы складывалась бы из этих новых масс, которые называют иногда «релятивистскими». Нетрудно понять, как это можно сделать. В системе отсчета, где
Следовательно, можно написать
если назвать величину Действительно, введение релятивистской массы уже для одной частицы создает иллюзию того, что увеличение энергии пли «релятивистской массы» частицы с ростом ее скорости (или импульса) связано с изменениями внутренней структуры частицы. По этого, конечно, нет и в помине (можно, не трогая частицу, просто перейти в другую систему отсчета). На самом деле рост энергии с увеличением скорости — следствие особых свойств 4-пространства времени, находящих свое отражение в преобразованиях Лоренца. С четырехмерной точки зрения термип «масса» относится к инвариантной абсолютной величине 4-нектора энергии-импульса. Вводя релятивистскую массу, мы фактически применяем термин «масса» (с точностью до множителя) к временной компоненте 4-вектора энергии-импульса, а это, как мы знаем, энергия. Но энергия и масса покоя, которой мы хотим пользоваться, — существенно разные физические понятия. Энергия — относительная величина; она зависит от того, в какой ИСО рассматривается частица или система частиц. Масса покоя остается одной и той же Таким образом, можно придать четкий четырехмерный смысл импульсу, энергии и массе покоя частицы (и системы), считая две первые величины составляющими 4-вектора энергии-импульса, а последнюю величину — абсолютной величиной этого же 4-вектора. С методической точки зрения этот вопрос обсуждается в Дополпении IV. Остановимся теперь на системе, образованной взаимодействующими частицами. Формула (5.63) остается, конечно, в силе. Однако вместо (5.61) нужно написать
где через оценить ее величину. Из соотношения (5.60) в системе отсчета, где
или, иначе,
где мы воспользовались соотношением Если соблюдено условие
Из (5.72) видно, что в системе взаимодействующих частиц гхегда отлична от нуля раэпость
которую припято называть дефектом масс. Когда нас интересует устойчивая система, то
Такой подсчет имеет смысл лишь в том случае, когда энергии связи значительны. Именно такой случай мы имеем в атомных ядрах. Известно, что атомные ядра очень устойчивы, — это и говорит об их большой энергии связи. Атомные ядра состоят из протонов и нейтронов, причем число протонов и нейтронов, входящих в данное ядро, вполне определенно. Можно экспериментально определить массу протона и нейтрона в свободном состоянии (вне ядра). Также экспериментально можно определить и массу любого атомного ядра. Составляя разность между суммарной массой свободных протопов и нейтронов, образующих ядро, и измеренной массой ядра, находят дефект масс и согласно (5.74) — энергию связи. Именно таким способом определяют энергии связи ядер в атомпой физике. Выпишем отдельно соотношения для ультрарелятивистских частиц
и, следовательно, из (5.51) будем иметь
Это значит, что масса покоя системы, состоящей из частиц с массой покоя, равной нулю, вовсе В заключение два слова о «сложных» подсистемах. Определяя массу покоя сложной системы согласно (5.70) или (5.64), нужно в качестве энергии брать полную энергию системы. Допустим, что в систему входит также и электромагнитное поле. Обозначив энергию электромагнитного поля через
Отсюда видно, что энергия электромагнитного поля, как и всякая энергия, вносит свой вклад в массу покоя системы.
|
1 |
Оглавление
|