Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 6.14. Потенциалы поля в движущейся непроводящей среде.В § 6.1 был введен 4-потенциал электромагнитного поля в вакууме. Конечно, электромагнитное поле можно определить сразу для определения полей Ниже будет показано, как можно получить выражения для потенциалов поля в движущейся среде. В качестве примера применения таких потенциалов будет рассмотрено распространение плоской электромагнитной волны в среде, которая движется относительно неподвижного наблюдателя. Этот пример имеет самое непосредственное отношение к вопросам, разбираемым в гл. 7. В данном параграфе используется аппарат тензорной алгебры, краткие сведения о котором можно найти в Приложении I, § 3. Перейдем к выводу уравнепий для 4-потенциала в движущихся средах. Поле в движущейся среде будем описывать двумя тензорами: тензором Введем четырехмерный потенциал поля в среде Ф, определив его следующим соотношением:
совпадающим с формулой (6.28). Зная четыре компоненты потенциала Материальные соотношения (0.79) и (6.80), определяющие Ьвязь между тензорами и
где тензор четвертого ранга еподбирается так, чтобы выполнялись соотношения Минковского (6.74) и (6.75). Нетрудно показать, что нужными свойствами обладает тензор следующего вида:
Здесь
в гл. 5 и имеющей компоненты
Нетрудно видеть, что в пустоте
который соответствует известным соотношениям между полями
В покоящейся среде тензор В этом легко убедиться, если в формуле (6.201) положить Поскольку компоненты тензора Перейдем теперь к выводу уравнений для потенциалов поля в движущейся среде. Для этого воспользуемся уравнением (6.60):
Подставим в это уравнение
Используя явное выражение (6.201) для тензора к виду
Умножим обе части уравнения (6.207) на тензор
Воспользовавшись легко проверяемым соотношением
получим окончательно
Система уравнений (6.209) определяет все компоненты потенциала Эта система может быть упрощена, если на потенциалы наложить удачно выбранное дополнительное условие, например потребовать, чтобы выполнялось следующее соотношение:
Это условие является обобщением известного условия Лоренца, налагаемого на потенциалы в вакууме (см. (6.8)). Возможность удовлетворить условию (6.210) доказывается так же, как и в обычной электродинамике. При выполнении условия (6.210) система уравнений (6.209) упрощается и принимает следующий вид:
Система (6.211) более удобна по сравнению с системой (6.209) в том отпошении, что она состоит из четырех уравнений, в каждое из которых входит только одна компонента вектор-потенциала Если в движущейся среде имеется граница раздела, то система (6.211) должна быть дополнена соответствующими граничными условиями (см. § 6.8). В качестве примера решения получеппых уравнений рассмотрим электромагнитное поле в движущейся среде в отсутствие внешних источников (токов и зарядок). Поскольку в этом случае все
В силу дополнительного условия (6.210) из четырех величин В этом случае из системы уравнений (6.212) получается следующее уравнение для нотенциала А:
где
которое следует из дополнительного условия (6.210) при
Зная Уравнепие (6.213) определяет распространение свободных электромагнитных волн в движущейся среде (под свободными электромагнитными волнами обычно подразумевается поле в отсутствие зарядов и токов). Перейдем теперь к решению этого уравнения. Будем искать вектор-потенциал
Подставляя это выражение в уравнепие (6.213), получаем
Из соотношения (6.217) видно, что амплитуда условие
Уравнение (0.218) пструдио вывести из диверсионного уравнения, справедливого для плоских монохроматических воли в покоящейся среде:
Мы перепишем его в виде
В скобки мы заключили инвариантную относительно преобразований Лоренца величину — квадрат четырехмерного волнового вектора в вакууме к
(см. по этому поводу § 7.2). В силу этих соображений в системе отсчета, относительно которой среда движется со скоростью V, диснерсионное уравнение как раз и приобретает вид (6.218):
Это условие определяет связь между волновым вектором
Из условия обращения в нуль скалярного произведения (6.219) следует, что в движущейся среде вектор
Отсюда видно, что вектор В перпендикулярен волновому вектору к, а вектор Е — нет (в силу условия (6.219) вектор В уравнение (6.217), связывающее между собой волновой вектор к и частоту со волпы в движущейся среде, входит скалярное произведение
или
Решая в том же приближении полученное квадратное уравнение для
Из двух знаков перед первым слагаемым в правой части нужно выбрать зпак плюс, так как при
здесь мы ввели показатель преломления покоящейся среды Если угол между векторами
Величина света, на этот раз в движущейся изотропной среде. Сравнивая выражения (6.222) и (6.221), мы видим, что фазовая скорость света в движущейся среде различна в различных направлениях. Если свет распространяется по движению среды
Если свет распространяется против движения среды
Множитель
|
1 |
Оглавление
|