Главная > Электрохимические системы
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

26. Электрический потенциал в термодинамике

Рассматриваемый в термодинамике потенциал связан с энергией, необходимой для обратимого переноса ионов из одной фазы в другую. Таким потенциалом, конечно, является электрохимический потенциал ионного компонента. Электростатический потенциал, кроме задач, связанных с его определением в конденсированных фазах, не связан непосредственно с обратимой работой. Хотя в термодинамике можно обойтись без электростатического потенциала за счет использования вместо него электрохимического потенциала, потребность в описании электрического состояния фазы остается.

Часто электрохимический потенциал ионного компонента представляют в виде суммы электрического и «химического» членов:

где — «электростатический» потенциал, а коэффициент активности, предполагаемый здесь независимым от электрического состояния данной фазы. Заметим прежде всего, что такое разложение не является необходимым, поскольку соответствующие формулы, имеющие значение с точки зрения термодинамики, уже получены в гл. 2.

Электростатический потенциал можно определить так, что он будет измеримым или неизмеримым. В зависимости от того, как определен величина будет также либо однозначно определена, либо полностью не определена. Развивать теорию можно, даже не имея такого четкого определения электростатического потенциала, какое дает электростатика, и не заботясь о тщательном определении его смысла. Если анализ проводится правильно, то физически осмысленные результаты можно получить в конце, компенсируя неопределенные члены.

Любое выбранное определение должно удовлетворять одному условию. Оно должно сводиться к определению (13-2), использованному для разности электрических потенциалов между фазами с одинаковым составом. Так, если фазы имеют одинаковый состав, то

Таким образом, является количественной мерой электрического состояния одной фазы относительно другой, имеющей тот же состав. Этому условию удовлетворяет целый ряд возможных определений

Вместо может использоваться внешний потенциал, который в принципе измерим. Его недостаток — трудность измерения и использования в термодинамических расчетах. Преимуществом является то, что он придает определенный смысл и в окончательных результатах этот потенциал не фигурирует, так что нужда в его измерении фактически отпадает.

Другая возможность — использование потенциала подходящего электрода сравнения. Поскольку электрод сравнения обратим по некоторому иону, присутствующему в растворе, это эквивалентно использованию электрохимического потенциала иона или Произвольность этого определения видна из необходимости выбора конкретного электрода сравнения или ионного компонента. Дополнительный недостаток такого выбора состоит в том, что в растворе, не содержащем компонента величина обращается в минус бесконечность. Таким образом, электрохимический потенциал не согласуется с нашей обычной концепцией электростатического потенциала, что объясняется его связью с обратимой работой. Данный выбор потенциала обладает тем преимуществом, что он связан с измерениями с помощью электродов сравнения, обычно применяемых в электрохимии.

Рассмотрим теперь третью возможность. Выберем ионный компонент и определим потенциал следующим образом:

Тогда электрохимический потенциал любого другого компонента можно выразить в виде

Следует отметить, что комбинации в скобках точно определены и не зависят от электрического состояния в соответствии с правилами, изложенными в разд. 14. В таком случае можно записать градиент электрохимического потенциала

Снова видна произвольность этого определения связанная с необходимостью выбора ионного компонента Преимущество такого определения состоит в его однозначной связи с электрохимическими потенциалами и согласованности с нашим обычным представлением об электростатическом потенциале. Ввиду наличия члена в уравнении (26-3) последнее можно использовать для раствора с исчезающей концентрацией компонента

В пределе бесконечно разбавленных растворов члены с коэффициентами активности исчезают вследствие выбора вторичного стандартного состояния (14-6). В этом пределе определение становится независимым от выбора стандартного иона Это создает основу того, что следовало бы называть теорией разбавленных растворов электролитов. В то же время уравнения (26-4) и (26-5) показывают, как нужно делать поправки на коэффициент активности в теории разбавленных растворов, не прибегая к коэффициентам активности отдельных ионов. Отсутствие зависимости от типа иона в случае бесконечно разбавленных растворов связано с возможностью измерения разностей электрических потенциалов между фазами с одинаковым составом. Такие растворы имеют существенно одинаковые составы в том смысле, что ион в растворе взаимодействует только с растворителем и даже дальнодействие со стороны остальных ионов им не ощущается.

Введение такого электрического потенциала полезно при анализе процессов переноса в растворах электролитов [5]. Для, таким образом определенного потенциала Смерл и Ньюмен используют термин квазиэлектростатический потенциал.

Мы обсудили возможные способы использования электрического потенциала в электрохимической термодинамике. Применение потенциала в теории переноса по существу то же, что

и в термодинамике. Работая с электрохимическими потенциалами, можно обойтись без электрического потенциала, хотя его введение может оказаться полезным или удобным. В кинетике электродных процессов в качестве движущей силы реакции может использоваться изменение свободной энергии. Это равносильно использованию поверхностного перенапряжения, определенного в разд. 8.

Электрический потенциал находит применение и в микроскопических моделях, таких, как теория Дебая-Хюккеля, упоминавшаяся выше и излагаемая в следующей главе. Всегда строго определить такой потенциал невозможно. Следует четко различать между теориями макроскопическими — термодинамика, теория процессов переноса и механика жидкостей — и микроскопическими — статистическая механика и кинетическая теория газов и жидкостей. Исходя из свойств молекул или ионов, микроскопические теории позволяют вычислять и связывать между собой такие макроскопические характеристики, как, например, коэффициенты активности и коэффициенты диффузии. При этом редко удается получить удовлетворительные количественные результаты без привлечения дополнительной экспериментальной информации. Макроскопические теории, с одной стороны, создают основу для наиболее экономного измерения и табулирования макроскопических характеристик, а с другой — позволяют использовать эти результаты для предсказания поведения макроскопических систем.

СПИСОК ОБОЗНАЧЕНИЙ

(см. скан)

(см. скан)

СПИСОК ЛИТЕРАТУРЫ

(см. скан)

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

(см. скан)

1
Оглавление
email@scask.ru