Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 99°. Потенциальная энергия сил всемирного тяготения. Космические скоростиВ связи с рядом особенностей, а также ввиду особой важности вопрос о потенциальной энергии сил всемирного тяготения необходимо рассмотреть отдельно и более детально. С первой особенностью мы сталкиваемся при выборе начала отсчета потенциальных энергий. На практике приходится рассчитывать движения данного (пробного) тела под действием сил всемирного тяготения, создаваемых другими телами разных масс и размеров. Допустим, что мы условились считать равной нулю потенциальную энергию при таком положении, при котором тела соприкасаются. Пусть пробное тело А при взаимодействии по отдельности с шарами Сопоставлять эти энергии между собой будет особо затруднительно в случаях, когда рассматриваются взаимодействия и движения трех или большего количества тел. Поэтому для сил всемирного тяготения ищется такой начальный уровень отсчета потенциальных энергий, который бы мог быть одинаковым, общим, для всех тел во Вселенной. Таким общим нулевым уровнем потенциальной энергии сил всемирного тяготения условились считать уровень, соответствующий расположению тел на бесконечно больших расстояниях друг от друга. Как видно из закона всемирного тяготения, на бесконечности обращаются в нуль и сами силы всемирного тяготения. При таком выборе начала отсчета энергий создается непривычное положение с определением значений потенциальных энергий и проведением всех расчетов. В случаях сил тяжести (рис. 5.29, а) и упругости (рис. 5.29, б) внутренние силы системы стремятся привести тела на нулевой уровень. При приближении тел к нулевому уровню потенциальная энергия системы уменьшается. Нулевому уровню действительно соответствует наименьшая потенциальная энергия системы.
Рис. 5.11.
Рис. 5.29.
Рис. 5.30. Это означает, что при всех других положениях тел потенциальная энергия системы положительна. В случае сил всемирного тяготения и при выборе нуля энергии на бесконечности все происходит наоборот. Внутренние силы системы стремятся увести тела от нулевого уровня (рис. 5.30). Они совершают положительную работу при удалении тел от нулевого уровня, т. е. при сближении тел. При любых конечных расстояниях В § 96 было найдено, что работа сил всемирного тяготения при переносе тела из бесконечности на расстояние
Поэтому потенциальную энергию сил всемирного тяготения нужно считать равной
Эта формула выражает еще одну особенность потенциальной энергии сил всемирного тяготения — сравнительно сложный характер зависимости этой энергии от расстояния между телами. На рис. 5.31 представлен график зависимости
Рис. 5.31. Любое тело вблизи поверхности Земли находится в своеобразной «потенциальной яме». Всякий раз, когда оказывается необходимым освободить тело от действия сил земного притяжения, нужно прилагать специальные усилия для того, чтобы «вытащить» тело из этой потенциальной ямы. Точно так же и все другие небесные тела создают вокруг себя такие потенциальные ямы — ловушки, которые захватывают и удерживают все не очень быстро движущиеся тела. Знание характера зависимости Для того чтобы корабль послать к другим планетам, его нужно вывести из сферы действия сил земного притяжения. Другими словами, нужно поднять его потенциальную энергию до нуля. Это становится возможным, если кораблю сообщить такую кинетическую энергию, чтобы он смог совершить работу против сил земного притяжения, равную
масса и радиус земного шара. Из второго закона Ньютона следует, что (§ 92) Но так как скорость корабля до запуска равна нулю, то можно записать просто:
где
или
Воспользуемся для исключения
Отсюда —
Скорость, необходимая для вывода тела из сферы действия сил земного притяжения, называется второй космической скоростью. Точно так же можно поставить и решить задачу о посылке корабля к далеким звездам. Для решения такой задачи нужно уже определить условия, при которых корабль будет выведен из сферы действия сил притяжения Солнца. Повторяя все рассуждения, которые были проведены в предыдущей задаче, можно получить такое же выражение для скорости, сообщаемой кораблю при запуске:
Здесь а — нормальное ускорение, которое сообщает Солнце Земле и которое может быть рассчитано по характеру движения Земли по орбите вокруг Солнца; Рассмотренный нами способ выбора начала отсчета потенциальной энергии используется и при расчетах электрических взаимодействий тел. Представление о потенциальных ямах также широко используется в современной электронике, теории твердого тела, теории атома и в физике атомного ядра.
|
1 |
Оглавление
|