Главная > Механика (Зубов В.Г.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 23. Изменение модуля скорости. Тангенциальное ускорение

Пользуясь тем, что модуль и знак скорости при движении по любым траекториям определяется только законом движения, для упрощения расчета рассмотрим прямолинейное движение. При этом, как было отмечено в предыдущем параграфе, нам не нужно будет думать об изменении направления скорости, и полное ускорение будет определяться тангенциальным: Также для упрощения рассмотрим такое движение, в котором скорость изменяется пропорционально времени. (Приблизительно так возрастает скорость электровоза, когда он трогается с места.)

Заметим, что движение, в котором модуль скорости за любые равные промежутки времени изменяется на одинаковую величину, называется равнопеременным движением.

График зависимости скорости от времени для выбранного нами движения представлен на рис. график закона движения для этого случая показан на рис. 1.65, б. Допустим, что в момент времени тело находилось в точке А траектории (рис. 1.66). Через некрторое малое время оно перешло в точку В. Зная моменты по графику скорости найдем значения скоростей и по ним построим векторы этих скоростей на чертеже траектории.

Оценим те изменения, которые произошли с вектором скорости за время Направление его не изменилось. Модуль увеличился. Оказалось, что к вектору за время присоединился дополнительный вектор имеющий то же самое направление. Именно этот вектор будет единственной мерой, определяющей изменение скорости, происшедшее за время

В качестве характеристики изменения скорости в точке А целесообразно принять отношение вектора ко времени Это и будет искомое тангенциальное ускорение в нашем нопеременном движении. Так как деление вектора на любое число не изменяет его векторного характера, то можно сказать, что тангенциальное ускорение — вектор.

Тангенциальное ускорение направлено по одной прямой с вектором скорости, а его модуль и знак определятся соотношением

Знак указывает на то, как вектор тангенциального ускорения ориентирован по отношению к вектору скорости. Если модуль скорости растет, то положительно и вектор тангенциального ускорения направлен в ту же сторону, что и вектор скорости. При уменьшении модуля скорости отрицательно и вектор тангенциального ускорения направлен противоположно вектору скорости.

Из определения равнопеременного движения следует, что мы можем в нашем примере

Рис. 1.65.

Рис. 1.66.

для расчета ускорения брать любые интервалы времени. Ускорение в этом движении будет оставаться постоянным все время. Это можно использовать для нового определения равнопеременного движения: равнопеременным движением называется такое движение, в котором тангенциальное ускорение по модулю остается постоянным во все время движения.

Рис. 1.67.

Рассмотрим случай более сложного изменения скорости. Например, скорость снижения парашютиста после раскрытия парашюта изменяется с течением времени так, как показано на рис. 1.67. В первые мгновения после раскрытия парашюта скорость уменьшается очень быстро, затем все медленнее. Начиная с какого-то момента, скорость спуска становится постоянной и равной скорости приземления.

За равные промежутки времени, взятые для разных моментов спуска, происходят разные изменения модуля скорости. Следовательно, ускорения также будут разными: вначале ускорение будет большим, в последующие моменты оно будет меньше и, наконец, при достижении режима стационарного движения обратится в нуль. (Отметим, что в этом случае торможения ускорение направлено противоположно скорости.) Для таких случаев при определении тангенциального ускорения по формуле уже нельзя брать промежутки времени произвольными. При неправильно выбранных больших мы не получим верных сведений о характере изменения скорости в отдельные моменты времени.

Для получения картины истинного изменения скорости промежуток надо выбирать достаточно малым,- таким, чтобы в течение этого промежутка движение можно было с достаточной точностью считать равнопеременным. А это означает, что должно быть таким, чтобы можно было заменить криволинейный участок графика отрезком прямой. Принимая такое требование к промежуткам времени, можно дать окончательно такое полное определение тангенциального ускорения, пригодное для всех видов движений: тангенциальным ускорением называется вектор, определяющий изменение модуля скорости-, тангенциальное ускорение всегда направлено по той линии, что и вектор скорости, а его модуль и знак определяются из соотношения

(ср. с определением модуля и знака скорости в § 16).

Отметим еще раз, что при рассмотрении прямолинейных движений . В этом случае можно опускать значок и просто говорить о полном ускорении в этом движении.

Из определения тангенциального ускорения, кроме того, следует, что в криволинейном движении вектор тангенциального ускорения, так же как вектор скорости, направлен по касательной к траектории.

Следует обратить внимание на то, что суждение о модуле и знаке тангенциального ускорения можно составить по графику зависимости скорости от времени. Чем больше ускорение в какой-либо момент времени, тем более круто идет в соответствующей точке кривая графика

1
Оглавление
email@scask.ru