Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
§ 23. Изменение модуля скорости. Тангенциальное ускорениеПользуясь тем, что модуль и знак скорости при движении по любым траекториям определяется только законом движения, для упрощения расчета рассмотрим прямолинейное движение. При этом, как было отмечено в предыдущем параграфе, нам не нужно будет думать об изменении направления скорости, и полное ускорение будет определяться тангенциальным: Заметим, что движение, в котором модуль скорости за любые равные промежутки времени изменяется на одинаковую величину, называется равнопеременным движением. График зависимости скорости от времени для выбранного нами движения представлен на рис. Оценим те изменения, которые произошли с вектором скорости за время В качестве характеристики изменения скорости в точке А целесообразно принять отношение вектора Тангенциальное ускорение направлено по одной прямой с вектором скорости, а его модуль и знак определятся соотношением
Знак Из определения равнопеременного движения следует, что мы можем в нашем примере
Рис. 1.65.
Рис. 1.66. для расчета ускорения брать любые интервалы времени. Ускорение в этом движении будет оставаться постоянным все время. Это можно использовать для нового определения равнопеременного движения: равнопеременным движением называется такое движение, в котором тангенциальное ускорение по модулю остается постоянным во все время движения.
Рис. 1.67. Рассмотрим случай более сложного изменения скорости. Например, скорость снижения парашютиста после раскрытия парашюта изменяется с течением времени так, как показано на рис. 1.67. В первые мгновения после раскрытия парашюта скорость уменьшается очень быстро, затем все медленнее. Начиная с какого-то момента, скорость спуска становится постоянной и равной скорости приземления. За равные промежутки времени, взятые для разных моментов спуска, происходят разные изменения модуля скорости. Следовательно, ускорения также будут разными: вначале ускорение будет большим, в последующие моменты оно будет меньше и, наконец, при достижении режима стационарного движения обратится в нуль. (Отметим, что в этом случае торможения ускорение направлено противоположно скорости.) Для таких случаев при определении тангенциального ускорения по формуле Для получения картины истинного изменения скорости промежуток
(ср. с определением модуля и знака скорости в § 16). Отметим еще раз, что при рассмотрении прямолинейных движений Из определения тангенциального ускорения, кроме того, следует, что в криволинейном движении вектор тангенциального ускорения, так же как вектор скорости, направлен по касательной к траектории. Следует обратить внимание на то, что суждение о модуле и знаке тангенциального ускорения можно составить по графику зависимости скорости от времени. Чем больше ускорение в какой-либо момент времени, тем более круто идет в соответствующей точке кривая графика
|
1 |
Оглавление
|