Главная > Оптика астрономических телескопов и методы ее расчета
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 2.2. Разложение выражений для аберраций в ряд. Аберрации третьего порядка (оптика Зейделя)

Аналитически аберрации можно представить в виде рядов, разложенных по степеням апертурного угла а и угла поля зрения В силу того, что мы рассматриваем только осесимметричные системы, разложение содержит только нечетные суммы степеней этих углов.

Пусть С есть центр кривизны преломляющей поверхности (рис. 2.3). Пусть из точки А в вершину падает луч он составляет с оптической осью угол Бесконечно тонкий конус лучей, осью которого является луч построит изображение точки А в точке А. Выберем систему координат х, у, z так, чтобы ее начало лежало в точке плоскость была касательной в точке к поверхности ось совпадала с оптической осью системы, ось у лежала в меридиональной плоскости, а ось в сагиттальной. Возьмем любой другой

Рис. 2.3. К определению разности хода лучей, собирающихся в точке А

луч пересекающий поверхность в точке Положение точки можно определить углами при точке А, которые при малом апертурном угле системы пропорциональны координатам Волновые фронты, приходящие в точку А по путям и неизбежно имеют разность хода. Зейдель показал, что первые члены разложения волновой аберрации в ряд будут

Из этой формулы видно, что суммарная аберрация складывается из отдельных аберраций, которые ниже будут описаны подробнее. Коэффициенты характеризуют вклад отдельных аберраций: сферческой, комы, астигматизма и дисторсии. Если оптическая система содержит к поверхностей, то каждая из них вызывает появление своей разности хода и все они суммируются. Поэтому продифференцировав (2.6) по у и по и используя (2.4), найдем меридиональную и сагиттальную компоненты поперечной аберрации системы

Суммирование в этих формулах выполняется по всем оптическим поверхностям системы. Коэффициент выражает сферическую аберрацию, коэффициент 211. — кому, коэффициенты и

астигматизм и кривизну поля, дисторсию. Эти величины называются суммами Зейделя. Удобно ввести обозначения

из которых первое выражает астигматизм в чистом виде, а второе — среднюю кривизну поля. В формулах (2.7) сумма степеней углов равна трем, поэтому они выражают аберрации третьего порядка (или аберрации Зейделя). Формулы (2.6) и (2.7) являются приближенными, так как в них опущены члены разложения в ряд пятой, седьмой и следующих степеней. Вообще число различных аберраций в зависимости от их порядка дается формулой

Суммы Зейделя определяют вклад аберраций в изображение точки. Они зависят от конструктивных параметров оптической системы: радиусов кривизны и формы поверхностей, толщин линз и воздушных промежутков между ними, показателей преломления оптических сред, положения предмета и входного зрачка.

1
Оглавление
email@scask.ru