Главная > Выделение сигналов на фоне случайных помех
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

§ 7. ОБ ОСНОВНЫХ ПОЛОЖЕНИЯХ СТАТИСТИЧЕСКОЙ ТЕОРИИ ФИЛЬТРАЦИИ

Вернемся к основным положениям статистической теории фильтрации.

Прежде всего, полезный сигнал и помеха предполагаются стационарными случайными процессами с известными корреляционными свойствами. Стационарность обоих процессов означает, что статистические свойства каждого из них с течением времени не меняются, т. е. что свойства каждого процесса не зависят от того, в какой именно интервал времени рассматриваем мы данный процесс. Мы считали также, что корреляционные функции нам известны; это значит, что производились какие-то предварительные исследования данного процесса.

Под оптимальными фильтрами в статистической теории фильтрации подразумеваются фильтры, работающие с минимальной средней квадратичной ошибкой. Этот критерий

ведет к наиболее простым соотношениям. Однако фактически он применим тогда, когда нежелательность ошибки возрастает с ее величиной. Но возможны случаи, когда все ошибки, превышающие некоторый предел, в одинаковой мере нежелательны: в таких случаях естественно пользоваться другим критерием.

Изложенная выше теория ограничивается линейными фильтрами. Нелинейных фильтров мы не рассматривали. В гл. VIII мы рассмотрим теорию фильтрации нормальных (гауссовых) процессов и последовательностей с более общей точки зрения и покажем, что в этом случае оптимальный линейный фильтр действительно является оптимальным также по сравнению с любым другим фильтром — линейным или нелинейным, а критерий средней квадратичной ошибки эквивалентен ряду других критериев. Этот результат можно объяснить, грубо говоря, тем, что все вероятностные характеристики нормальных процессов с равным нулю средним значением определяются их корреляционными функциями. Линейный фильтр как раз использует эти функции, и необходимость в линейных фильтрах возникает только для случайных процессов, статистические свойства которых не исчерпываются функциями корреляции.

Таким образом, нелинейные фильтры могут иметь значение лишь для случайных процессов, не подчиняющихся нормальному закону. Преимущество таких фильтров по сравнению с линейными должно сказываться тем сильнее, чем больше данный случайный процесс отличается от нормального. Теория нелинейных фильтров весьма сложна, и ощутимых практических результатов она до сих пор не дала.

В радиолокации проблему фильтрации следует ставить иначе. В то время как помеху можно по-прежнему считать случайным процессом, полезный сигнал здесь уже имеет определенную форму (например, является прямоугольным импульсом), только с некоторыми неизвестными параметрами. Поэтому проблема фильтрации не сводится к воспроизведению полезного сигнала в малоискаженной форме, а возникает задача такого преобразования полезного сигнала, чтобы обнаружение его среди помех и измерение его параметров сопровождалось наименьшей ошибкой. Фильтры такого типа мы рассмотрим в гл. III.

Впервые проблемы линейной экстраполяции стационарных случайных последовательностей и процессов были

исследованы в работах А. Н. Колмогорова и других советских математиков. Однако лишь благодаря работам Норберта Винера по оптимальной линейной фильтрации и экстраполяции случайных процессов данные проблемы вышли за рамки чистой математики и приобрели практическое значение.

Поскольку эти задачи о фильтрации явились своего рода образцом для «оптимального» решения целого ряда других статистических задач, представляющих интерес для техники, мы продолжим их изучение в следующей главе. Более подробное изложение относящихся сюда вопросов читатель может найти в обзорной статье А. М. Яглома и в ряде книг

1
Оглавление
email@scask.ru