Главная > Выделение сигналов на фоне случайных помех
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ГЛАВА III. ВЫДЕЛЕНИЕ СИГНАЛОВ ИЗВЕСТНОЙ ФОРМЫ НА ФОНЕ СЛУЧАЙНЫХ ПОМЕХ

§ 16. ФИЛЬТРЫ ДЛЯ СИГНАЛОВ ИЗВЕСТНОЙ ФОРМЫ

В гл. I и II мы считали, что сигнал и помеха являются случайными процессами с известными корреляционными свойствами. Как мы уже отмечали выше (см. § 7), в радиолокации, а также в ряде других областей радиотехники форма полезного сигнала, поступающего в приемник, является фиксированной. В этом случае полезный сигнал нужно рассматривать не как случайный процесс, а как заданную функцию с одним или несколькими неизвестными параметрами (амплитуда, время прихода, высокочастотная фаза и т. п.). Цель фильтрации заключается уже не в воспроизведении формы сигнала (известной) с минимумом средней квадратичной ошибки, а в наиболее надежном обнаружении полезного сигнала на фоне случайных помех и в наиболее точном изхмерении его параметров, в особенности времени прихода сигнала, фиксирующего расстояние до отражающего объекта. Поэтому качество фильтра, выделяющего сигналы известной формы, характеризуется отношением сигнал/помеха на выходе фильтра. Связь этого отношения с более тонкими вероятностными свойствами приемника будет исследована во второй части книги.

Предполагая, что полезный сигнал имеет вполне определенную форму, рассмотрим процесс его прохождения через линейный фильтр К с частотной характеристикой Л». На вход фильтра подается смесь полезного сигнала имеющего известную форму, и помехи представляющей собой стационарный случайный процесс,

Полезный сигнал может отсутствовать, тогда на выходе фильтра имеется одна помеха

Мы будем сначала считать, что функция полностью известна, так что искомый фильтр должен максимально облегчить обнаружение полезного сигнала, т. е. помочь решить, какая из возможностей - (16.01) или - реализуется в данном опыте. Более сложный случа, когда сигнал зависит от неизвестных параметров, будет рассмотрен в конце параграфа. На выходе фильтра при наличии сигнала мы получаем функцию

где есть результат преобразования полезного сигнала фильтром результат преобразования помехи. Сигнал можно, например, себе представить в виде прямоугольных радиоимпульсов, часто применяемых в радиолокации. Считая, что полезный сигнал имеет конечную длительность (или достаточно быстро стремится к нулю при мы можем разложить его в интеграл Фурье

где

Функция полезный сигнал на выходе фильтра К — равна

где формулу (2.23)] есть комплексная частотная характеристика фильтра К.

Для случайного процесса — помехи — вместо спектральных выражений вида (16.06) следует воспользоваться теоремой Хинчина (см. § 3), согласно которой, в частности, можно написать

Здесь есть интенсивность помехи (черта означает образование статистического среднего), спектральная интенсивность помехи на входе фильтра. На выходе фильтра К помеха будет иметь согласно формуле (3.09) интенсивность

Отношение сигнал/помеха (по мощности) на выходе фильтра мы будем определять выражением

где значение сигнала на выходе в некоторый момент Пользуясь формулами (16.06) и (16.08), получим

Будем искать фильтр, который бы давал на выходе наибольшее значение по сравнению со всеми остальными. Это значит, что мы будем принимать решение по значению

поэтому нам важно, чтобы слагаемое по своей абсолютной величине как можно более превосходило

Частотную характеристику искомого фильтра можно найти из следующего неравенства

которое показывает, что

Мы получили таким образом верхний предел для Если взять

где с — произвольная константа, то такой фильтр будет давать максимально достижимое значение равное

Неравенство (16.12) является обобщением известного алгебраического неравенства Шварца-Буняковского. Чтобы его доказать, возьмем двойной интеграл

поскольку исходный интеграл отрицательных значений принимать не может. Учитывая, что

мы получим неравенство

для любых двух функций и если выписанные интегралы имеют смысл (сходятся). Полагая

мы и приходим к неравенству (16.12).

Таким образом, среди линейных фильтров наилучшим является фильтр с частотной характеристикой (16.14). Если помеха есть нормальный случайный процесс, то такой фильтр является абсолютно оптимальным, как мы покажем во второй части книги. Поэтому нелинейные фильтры могут иметь значение лишь при помехах, не являющихся нормальными, а тогда математическое исследование оптимальных фильтров и оптимальных приемников усложняется настолько, что ощутимых практических результатов получить не удается.

Физический смысл формулы (16.14) очень прост: оптимальный линейный фильтр К пропускает элементарный интервал частот в тем большей степени, чем больше спектральная амплитуда полезного сигнала и чем меньше спектральная интенсивность помех в этом интервале. Формула (16.15) при этом показывает, что отношение сигнал/помеха на выходе такого фильтра тем больше, чем больше отличие спектра сигнала от спектра помехи (ср. конец § 2). Так, например, если спектральная интенсивность весьма мала в некоторой части частотного диапазона, занятого сигналом, то оптимальный фильтр К будет пропускать практически только эту часть диапазона, и величина (16.15) будет весьма большой. Полезный сигнал на выходе фильтра сильно отличается по форме от сигнала на его входе (ср. далее § 17 и 20), однако эта форма известна и поэтому никаких опасностей при ее искажении не возникает.

Заметим, что из формул (16.06) и (16.14) вытекает соотношение

откуда (ср. § 3)

При использовании данного фильтра для обнаружения полностью известного сигнала нужно только значение (16.11), т. е. значение выходной функции фильтра в один определенный момент времени, поскольку в другие моменты согласно формуле (16.21) полезный сигнал на выходе фильтра меньше. Если же полезный сигнал имеет вид

т. е. зависит от неизвестных параметров амплитуда, время появления сигнала, известная функция времени), то результаты несколько изменяются. Прежде всего, по формуле (16.05) мы будем иметь

где

так что функция зависит от неизвестных параметров. Чтобы не вводить в формулу (16.14) неизвестного параметра ее приходится изменить следующим образом:

так как в противном случае мы должны применять столько фильтров, сколько имеется возможных значений Формула (16.20) тогда принимает вид:

так что

где

есть отношение сигнал/помеха на выходе фильтра с частотной характеристикой (16.25), определяемое с помощью соотношения

При произвольном отношение сигнал/помеха можно определить по формуле

или же пользоваться усредненным параметром

где вычисляется в соответствии с законом распределения случайной величины

Очевидно, что частотная характеристика (16.25) обеспе чивает максимальное значение параметров (16.30) и (16.31), причем в данном случае процесс на выходе фильтра используется более полно: а именно, если параметр может принимать значения то необходимы значения . В частности, если может принимать все значения в интервале 0 то нужно использовать функцию при Если помехи отсутствуют то получающаяся таким образом функция позволит полностью определить параметры находится по положению максимума функции по величине этого максимума [см. формулу (16.27)]. Слабые помехи большие значения приводят, очевидно, к некоторым ошибкам в определении поскольку помехи случайным образом смещают максимум [по отношению к максимуму так, что положение максимума на оси и его абсолютная величина изменяются. При увеличении помех (т. е. при уменьшении эти ошибки растут, причем при достаточно больших помехах (достаточно малых наличие или отсутствие полезного сигнала почти полностью маскируется помехами и даже оптимальный фильтр, обеспечивающий максимальное значение не может выделить сигнала на фоне помех. Такова качественная картина работы оптимального линейного фильтра.

Заметим в заключение, что если в формуле (16.14) положить , то в силу соотношений (16.09) и (16.21) мы будем иметь

Таким образом, параметр —отношение сигнал/помеха — дает нам одновременно полезный сигнал и интенсивность помех на выходе оптимального линейного фильтра. Отметим также интересное соотношение

связывающее полезный сигнал и корреляционную функцию помех на выходе оптимального фильтра. Аналогичные формулы можно вывести для частотной характеристики (16.25).

1
Оглавление
email@scask.ru