Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
ГЛАВА III. ВЫДЕЛЕНИЕ СИГНАЛОВ ИЗВЕСТНОЙ ФОРМЫ НА ФОНЕ СЛУЧАЙНЫХ ПОМЕХ§ 16. ФИЛЬТРЫ ДЛЯ СИГНАЛОВ ИЗВЕСТНОЙ ФОРМЫВ гл. I и II мы считали, что сигнал и помеха являются случайными процессами с известными корреляционными свойствами. Как мы уже отмечали выше (см. § 7), в радиолокации, а также в ряде других областей радиотехники форма полезного сигнала, поступающего в приемник, является фиксированной. В этом случае полезный сигнал нужно рассматривать не как случайный процесс, а как заданную функцию с одним или несколькими неизвестными параметрами (амплитуда, время прихода, высокочастотная фаза и т. п.). Цель фильтрации заключается уже не в воспроизведении формы сигнала (известной) с минимумом средней квадратичной ошибки, а в наиболее надежном обнаружении полезного сигнала на фоне случайных помех и в наиболее точном изхмерении его параметров, в особенности времени прихода сигнала, фиксирующего расстояние до отражающего объекта. Поэтому качество фильтра, выделяющего сигналы известной формы, характеризуется отношением сигнал/помеха на выходе фильтра. Связь этого отношения с более тонкими вероятностными свойствами приемника будет исследована во второй части книги. Предполагая, что полезный сигнал имеет вполне определенную форму, рассмотрим процесс его прохождения через линейный фильтр К с частотной характеристикой Л». На вход фильтра подается смесь полезного сигнала имеющего известную форму, и помехи
Полезный сигнал может отсутствовать, тогда на выходе фильтра имеется одна помеха
Мы будем сначала считать, что функция
где
где
Функция
где Для случайного процесса — помехи
Здесь
Отношение сигнал/помеха (по мощности) на выходе фильтра мы будем определять выражением
где
Будем искать фильтр, который бы давал на выходе наибольшее значение
поэтому нам важно, чтобы слагаемое Частотную характеристику искомого фильтра можно найти из следующего неравенства
которое показывает, что
Мы получили таким образом верхний предел для
где с — произвольная константа, то такой фильтр будет давать максимально достижимое значение
Неравенство (16.12) является обобщением известного алгебраического неравенства Шварца-Буняковского. Чтобы его доказать, возьмем двойной интеграл
поскольку исходный интеграл отрицательных значений принимать не может. Учитывая, что
мы получим неравенство
для любых двух функций
мы и приходим к неравенству (16.12). Таким образом, среди линейных фильтров наилучшим является фильтр с частотной характеристикой (16.14). Если помеха Физический смысл формулы (16.14) очень прост: оптимальный линейный фильтр К пропускает элементарный интервал частот Заметим, что из формул (16.06) и (16.14) вытекает соотношение
откуда (ср. § 3)
При использовании данного фильтра для обнаружения полностью известного сигнала нужно только значение (16.11), т. е. значение выходной функции фильтра в один определенный момент времени, поскольку в другие моменты согласно формуле (16.21) полезный сигнал на выходе фильтра меньше. Если же полезный сигнал имеет вид
т. е. зависит от неизвестных параметров
где
так что функция
так как в противном случае мы должны применять столько фильтров, сколько имеется возможных значений
так что
где
есть отношение сигнал/помеха на выходе фильтра с частотной характеристикой (16.25), определяемое с помощью соотношения
При произвольном
или же пользоваться усредненным параметром
где Очевидно, что частотная характеристика (16.25) обеспе чивает максимальное значение параметров (16.30) и (16.31), причем в данном случае процесс Заметим в заключение, что если в формуле (16.14) положить
Таким образом, параметр
связывающее полезный сигнал и корреляционную функцию помех на выходе оптимального фильтра. Аналогичные формулы можно вывести для частотной характеристики (16.25).
|
1 |
Оглавление
|