Главная > Выделение сигналов на фоне случайных помех
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

ГЛАВА III. ВЫДЕЛЕНИЕ СИГНАЛОВ ИЗВЕСТНОЙ ФОРМЫ НА ФОНЕ СЛУЧАЙНЫХ ПОМЕХ

§ 16. ФИЛЬТРЫ ДЛЯ СИГНАЛОВ ИЗВЕСТНОЙ ФОРМЫ

В гл. I и II мы считали, что сигнал и помеха являются случайными процессами с известными корреляционными свойствами. Как мы уже отмечали выше (см. § 7), в радиолокации, а также в ряде других областей радиотехники форма полезного сигнала, поступающего в приемник, является фиксированной. В этом случае полезный сигнал нужно рассматривать не как случайный процесс, а как заданную функцию с одним или несколькими неизвестными параметрами (амплитуда, время прихода, высокочастотная фаза и т. п.). Цель фильтрации заключается уже не в воспроизведении формы сигнала (известной) с минимумом средней квадратичной ошибки, а в наиболее надежном обнаружении полезного сигнала на фоне случайных помех и в наиболее точном изхмерении его параметров, в особенности времени прихода сигнала, фиксирующего расстояние до отражающего объекта. Поэтому качество фильтра, выделяющего сигналы известной формы, характеризуется отношением сигнал/помеха на выходе фильтра. Связь этого отношения с более тонкими вероятностными свойствами приемника будет исследована во второй части книги.

Предполагая, что полезный сигнал имеет вполне определенную форму, рассмотрим процесс его прохождения через линейный фильтр К с частотной характеристикой Л». На вход фильтра подается смесь полезного сигнала имеющего известную форму, и помехи представляющей собой стационарный случайный процесс,

Полезный сигнал может отсутствовать, тогда на выходе фильтра имеется одна помеха

Мы будем сначала считать, что функция полностью известна, так что искомый фильтр должен максимально облегчить обнаружение полезного сигнала, т. е. помочь решить, какая из возможностей - (16.01) или - реализуется в данном опыте. Более сложный случа, когда сигнал зависит от неизвестных параметров, будет рассмотрен в конце параграфа. На выходе фильтра при наличии сигнала мы получаем функцию

где есть результат преобразования полезного сигнала фильтром результат преобразования помехи. Сигнал можно, например, себе представить в виде прямоугольных радиоимпульсов, часто применяемых в радиолокации. Считая, что полезный сигнал имеет конечную длительность (или достаточно быстро стремится к нулю при мы можем разложить его в интеграл Фурье

где

Функция полезный сигнал на выходе фильтра К — равна

где формулу (2.23)] есть комплексная частотная характеристика фильтра К.

Для случайного процесса — помехи — вместо спектральных выражений вида (16.06) следует воспользоваться теоремой Хинчина (см. § 3), согласно которой, в частности, можно написать

Здесь есть интенсивность помехи (черта означает образование статистического среднего), спектральная интенсивность помехи на входе фильтра. На выходе фильтра К помеха будет иметь согласно формуле (3.09) интенсивность

Отношение сигнал/помеха (по мощности) на выходе фильтра мы будем определять выражением

где значение сигнала на выходе в некоторый момент Пользуясь формулами (16.06) и (16.08), получим

Будем искать фильтр, который бы давал на выходе наибольшее значение по сравнению со всеми остальными. Это значит, что мы будем принимать решение по значению

поэтому нам важно, чтобы слагаемое по своей абсолютной величине как можно более превосходило

Частотную характеристику искомого фильтра можно найти из следующего неравенства

которое показывает, что

Мы получили таким образом верхний предел для Если взять

где с — произвольная константа, то такой фильтр будет давать максимально достижимое значение равное

Неравенство (16.12) является обобщением известного алгебраического неравенства Шварца-Буняковского. Чтобы его доказать, возьмем двойной интеграл

поскольку исходный интеграл отрицательных значений принимать не может. Учитывая, что

мы получим неравенство

для любых двух функций и если выписанные интегралы имеют смысл (сходятся). Полагая

мы и приходим к неравенству (16.12).

Таким образом, среди линейных фильтров наилучшим является фильтр с частотной характеристикой (16.14). Если помеха есть нормальный случайный процесс, то такой фильтр является абсолютно оптимальным, как мы покажем во второй части книги. Поэтому нелинейные фильтры могут иметь значение лишь при помехах, не являющихся нормальными, а тогда математическое исследование оптимальных фильтров и оптимальных приемников усложняется настолько, что ощутимых практических результатов получить не удается.

Физический смысл формулы (16.14) очень прост: оптимальный линейный фильтр К пропускает элементарный интервал частот в тем большей степени, чем больше спектральная амплитуда полезного сигнала и чем меньше спектральная интенсивность помех в этом интервале. Формула (16.15) при этом показывает, что отношение сигнал/помеха на выходе такого фильтра тем больше, чем больше отличие спектра сигнала от спектра помехи (ср. конец § 2). Так, например, если спектральная интенсивность весьма мала в некоторой части частотного диапазона, занятого сигналом, то оптимальный фильтр К будет пропускать практически только эту часть диапазона, и величина (16.15) будет весьма большой. Полезный сигнал на выходе фильтра сильно отличается по форме от сигнала на его входе (ср. далее § 17 и 20), однако эта форма известна и поэтому никаких опасностей при ее искажении не возникает.

Заметим, что из формул (16.06) и (16.14) вытекает соотношение

откуда (ср. § 3)

При использовании данного фильтра для обнаружения полностью известного сигнала нужно только значение (16.11), т. е. значение выходной функции фильтра в один определенный момент времени, поскольку в другие моменты согласно формуле (16.21) полезный сигнал на выходе фильтра меньше. Если же полезный сигнал имеет вид

т. е. зависит от неизвестных параметров амплитуда, время появления сигнала, известная функция времени), то результаты несколько изменяются. Прежде всего, по формуле (16.05) мы будем иметь

где

так что функция зависит от неизвестных параметров. Чтобы не вводить в формулу (16.14) неизвестного параметра ее приходится изменить следующим образом:

так как в противном случае мы должны применять столько фильтров, сколько имеется возможных значений Формула (16.20) тогда принимает вид:

так что

где

есть отношение сигнал/помеха на выходе фильтра с частотной характеристикой (16.25), определяемое с помощью соотношения

При произвольном отношение сигнал/помеха можно определить по формуле

или же пользоваться усредненным параметром

где вычисляется в соответствии с законом распределения случайной величины

Очевидно, что частотная характеристика (16.25) обеспе чивает максимальное значение параметров (16.30) и (16.31), причем в данном случае процесс на выходе фильтра используется более полно: а именно, если параметр может принимать значения то необходимы значения . В частности, если может принимать все значения в интервале 0 то нужно использовать функцию при Если помехи отсутствуют то получающаяся таким образом функция позволит полностью определить параметры находится по положению максимума функции по величине этого максимума [см. формулу (16.27)]. Слабые помехи большие значения приводят, очевидно, к некоторым ошибкам в определении поскольку помехи случайным образом смещают максимум [по отношению к максимуму так, что положение максимума на оси и его абсолютная величина изменяются. При увеличении помех (т. е. при уменьшении эти ошибки растут, причем при достаточно больших помехах (достаточно малых наличие или отсутствие полезного сигнала почти полностью маскируется помехами и даже оптимальный фильтр, обеспечивающий максимальное значение не может выделить сигнала на фоне помех. Такова качественная картина работы оптимального линейного фильтра.

Заметим в заключение, что если в формуле (16.14) положить , то в силу соотношений (16.09) и (16.21) мы будем иметь

Таким образом, параметр —отношение сигнал/помеха — дает нам одновременно полезный сигнал и интенсивность помех на выходе оптимального линейного фильтра. Отметим также интересное соотношение

связывающее полезный сигнал и корреляционную функцию помех на выходе оптимального фильтра. Аналогичные формулы можно вывести для частотной характеристики (16.25).

1
Оглавление
email@scask.ru