Главная > Статистический синтез при априорной неопределенности и адаптация информационных систем
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

14.5. НЕКОТОРЫЕ ОБОБЩЕНИЯ

Прежде всего сделаем следующее замечание. При применении функций потерь, квадратичных по отношению к информативным параметрам алгоритмы, минимизирующие средний риск, включают в

себя образование в качестве оценок условных математических ожиданий параметров №).

Предполагая, что априорные распределения этих параметров подчиняются тем же условиям гладкости и ширины (по сравнению с апостериорными распределениями), что и априорные распределения параметров обстановки, мы заменили условные математические ожидания на оценки максимальною правдоподобия Из смысла параметров обстановки в условиях, когда стоит говорить об адаптации, вытекает, что в подавляющем большинстве случаев наложенные на распределения ограничения не существенны.

Однако сделать в общем виде такое же заключение о распределениях нельзя. Здесь могут встретиться случаи, в которых предположенные выше условия выполняются, но могут иметь место и противоположные случаи. В таких случаях для минимизации среднего риска должны применяться не оценки максимального правдоподобия, а согласно (14.4.9) оценки

которые в силу выполнения условий, накладываемых на функции приближенно находятся как

а оценки находятся из условий

При замене равномерным распределением и слабой зависимости от предыдущее выражение упрощается, принимая вид

Это же выражение следует применять при адаптивном байесовом подходе (§ 6.2).

Системы, осуществляющие оценки (14.5.1) совместно с оценками максимального правдоподобия амогут быть и не сложнее систем, строящих оценки Однако аналитическое построение этих оценок конечно сложнее, чем нахождение оценок

Оценки (14.5.1) приводят к минимизации среднего риска не только при квадратичных функциях потерь. Если функции потерь удовлетворяют условиям симметрии

что имеет место только в задачах, когда параметры при всех имеют равное число компонент и покомпонентно один и тот

же физический смысл, то оценки (14.5.1) минимизируют средний риск, при условии

где

Строго говоря, это справедливо при бесконечных областях интегрирования, но практически при большой ширине (по всем компонентам) априорного распределения по сравнению с функцией правдоподобия №) конечная область интегрирования может быть приближенно заменена бесконечной.

Мы нашли квазиоптимальные правила проверки гипотез совместно с оценкой соответствующих им параметров при наблюдении сигналов в дискретные моменты времени. Если наблюдаемые величины представляют собой функции непрерывного времени, то правила принятия решений могут быть получены из алгоритмов, описанных в предыдущих параграфах при . В результате во всех выражениях отношения правдоподобия должны быть заменены функционалами отношений правдоподобия и после этой замены все полученные результаты остаются в силе.

1
Оглавление
email@scask.ru