Глава 8. АДАПТИВНЫЙ БАЙЕСОВ ПОДХОД ПРИ НЕПАРАМЕТРИЧЕСКОЙ АПРИОРНОЙ НЕОПРЕДЕЛЕННОСТИ
8.1. ВВОДНЫЕ ЗАМЕЧАНИЯ
Несколько последующих глав будет посвящено детальному рассмотрению адаптивного байесова подхода при наличии параметрической априорной неопределенности применительно к широким классам задач с доведением правил решения до детальной структуры и исследованием эффективности этих правил решения. В этой главе на ряде примеров, каждый из которых также относится к достаточно широкой
совокупности задач, проиллюстрируем возможности адаптивного байесова подхода в непараметрическом случае.
В § 6.1 мы уже рассмотрели пример применения адаптивного байесова подхода в случае непараметрической априорной неопределенности (пример 2). Этот пример в некотором отношении является крайним: характер априорной неопределенности таков, что какие-либо сведения об аналитическом описании исходного материала полностью отсутствуют: совсем неизвестно распределение вероятности наблюдаемых значений полностью неизвестен вид функции потерь и тем более природа и статистическое описание параметров к, влияющих на величину потерь и последствия от принятия того или иного решения.
Нужно отметить, что за эту крайность приходится расплачиваться довольно серьезными ограничениями: предположениями о дискретности множества решений о дискретности множества значений о независимости и одинаковости распределений вероятности всех значений об одинаковости истинных (неизвестных нам) функций потерь на всех шагах и требованием, чтобы полная совокупность данных наблюдения х содержала значения принятых при решений и появившихся при этом потерь Указанные ограничения выражают иную форму представления имеющихся априорных знаний, отличную от параметрического статистического описания неизвестных распределений вероятности и функций потерь, причем, как видно из перечисленных ограничений, необходимый для нахождения правила решения объем этих априорных знаний довольно велик.
Возникающее иногда противопоставление параметрического и непараметрического подходов к решению задач синтеза и обсуждение, какой из них является более подходящим в условиях априорной неопределенности и соответствует более глубокой степени этой неопределенности, представляются довольно беспочвенными: параметрическое и непараметрическое описания исходных данных задачи просто соответствуют разным видам имеющихся ограниченных априорных знаний и взаимно дополняют друг друга.
Характерной чертой непараметрического случая является использование в той или иной степени эмпирических распределений вероятности вместо истинных и эмпирических средних значений вместо математических ожиданий, подобно тому, как это было сделано в примере 2 § 6.1 при замене апостериорного риска (условного математического ожидания функции потерь) его оценкой — эмпирическим средним значением ожидаемых при данном результате наблюдения потерь. Это обстоятельство приводит к определенным требованиям к объему и составу полной совокупности данных наблюдения х, для того чтобы эмпирическое осреднение приводило к состоятельным оценкам необходимых для отыскания правил решения математических ожиданий (среднего риска, апостериорного риска, минимального значения апостериорного риска и т. д.). Указанная совокупность х должна иметь вполне определенный состав и содержать достаточное для построения таких оценок количество данных наблюдения.
Так, в условиях примера 2 § 6.1 (при неизвестной функции потерь) совершенно необходимо, помимо величин знать значение принятого при каждом решения и величину потерь от
принятия этого решения. В противном случае никакого адаптивного байесова или любого другого правила решения, обладающего хотя бы свойством асимптотической оптимальности, построить невозможно.
В этом отношении непараметрические задачи имеют широкий спектр возможностей: чем больше объем наших сведений (качественного или количественного характера) об аналитических свойствах распределений вероятности х и X и функций потерь, тем менее жесткие требования предъявляются к составу и объему совокупности данных наблюдения и наоборот.