Пред.
След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
7. НАПРЯЖЕНИЯ И ДЕФОРМАЦИИПредварительные замечания. Исследование вопросов прочности деталей машин и конструкций при вибрации связано с необходимостью измерения переменных механических напряжений и деформаций в различных точках этих деталей. В данном разделе приведены основные понятия и зависимости, необходимые для задач измерения деформаций и напряжений. Более подробно вопросы напряженного и деформированного состояний тел рассматриваются в руководствах по теории упругости [1, 10, 18] (см. также том I, гл. VIII, раздел 2).
Рис. 16. Напряжения в точке выбранного сечения тела
Рис. 17. Малый кубический элемент тела с действующими на гранях компонентами напряжений Напряжения. Напряжением называют интенсивность внутренних сил в иеко торой точке тела и оценивают силой, приходящейся на единицу площади. Единицей напряжения является паскаль,
На рис. 17 показан малый кубический элемент тела в точке Три нормальных напряжения
Таким образом, для описания напряжений, действующих на координатных плоскостях, проходящих через любую точку, достаточно иметь шесть величин Для площадки, проходящей через ту же точку
а нормальное напряжение
Площадки, на которых действуют только нормальные напряжения, а касательные напряжения равны нулю, называют главными площадками. Действующие на этих площадках напряжения называют главными, а их направления — главными направлениями натяжений. В общем случае через любую точку тела проходят три взаимно перпендикулярные площадки, которым отвечают главные напряжения
где
Максимальные касательные напряжения определяются выражением
и действуют по площадке, перпендикулярной второй главной площадке и делящей пополам угол между максимальным и минимальным главными напряжениями. Деформации. Деформацией сплошного тела называют такое изменение положений его точек, при котором изменяются расстоячия между ними. Деформация, выраженная в единицах длины, называется абсолютной. Отношение абсолютной Деформации к некоторому начальному размеру назывчюг относительной деформацией. Относительные деформации делят на относительные удлинения и относительные деформации сдвига. Деформация в плоскости складывается из двух деформаций удлинения и одной деформации сдвига. На рис. 18 показано влияние деформации удлинения
так как
Аналогично при деформации удлинения
Рис. 18. График влияния деформации удлинения в направлении оси х на деформацию линейного элемента, расположенного под углом а к оси х
Рис. 19. График влияния деформации сдвига у на деформацию линейного элемента, расположенного под углом а к оси х На рис. 19 показано влияние деформации сдвига уху в плоскости на деформацию в линейного элемента:
так как
Деформация сдвига уху определяет искажение прямого угла образованными прямыми, первоначально совпадающими по направлению с осями х и у. Результирующая относительная деформация
При объемном деформированном состоянии относительная деформация
где симметричного тензора деформаций
В любой точке тела заданной деформации всегда соответствуют три взаимно перпендикулярных направления, называемых главными направлениями (осями) деформаций, углы между которыми остаются прямыми и после деформации Деформации удлинений в этих направлениях
где
Направляющие косинусы
Для плоского напряженного состояния
причем положительные углы и Для однородных и изотропных тел главные направления деформаций совпадают с главными направлениями напряжений. Связь между напряжениями и деформациями. Для изотропного упругого тела при малых деформациях обобщенный закон Гука устанавливает линейные соотношения между компонентами деформации и компонентами напряжений
содержащие модуль упругости (модуль Юнга)
где
На рис. 20, а показана деформация стержня, работающего на растяжение, а на рис. 20, б диаграммы напряжений и деформаций в точке стержня для различных направлений в плоскости, проходящей через ось
Рис. 20. Эффект Пуассона (а) при деформации растяжения стержня и диаграммы напряжений и деформаций (б) в точке стержня в плоскости, проходящей через ось х На рис. 20, б видно, что в направлении Измерение деформаций и напряжении. Деформации измеряют непосредственно, а напряжения — косвенно, используя расчет по формулам связи напряжений и деформаций. Устройства для непосредственного измерения деформаций называют тензометрами. Среди тензометров наиболее распространены резистшные тензодатчики для измерения деформации удлинения в заданном направлении (см. раздел 3 гл. VIII и раздел 6 гл. IX). При применении таких датчиков измерения основаны на использовании зависимостей, описываемых уравнениями (122) и (123). Уравнения (122) используют при измерении поверхностных деформаций, При измерении поверхностных деформаций обычно предполагают, что на площадке
Рис. 21. Направления измеряемых удлинений в типовых тензометрнческих розетках: а — розетка типа «дельта», б - прямоугольная розетка; в — розетка типа Когда главные направления известны, то при измерениях используют Два датчика. Если же главные направления неизвестны, то для определения
Для прямоугольной розетки (см. скан) Для розетки типа «Т-дельта» (см. скан) При измерении динамических деформаций и напряжений приведенные выражения позволяют вычислить искомые величины для каждого момента времени. Для измерения объемной деформации в точке в тело помещают розетку из шести датчиков, что позволяет получить систему из шести независимых уравнений вида (123) [21]. Следует указать также, что при исследовании полей напряжений и деформаций существенную помощь оказывает применение оптических методов — метода фотоупругости и метода муара [18, 22]. Список литературы(см. скан) (см. скан)
|
1 |
Оглавление
|