Главная > Сопротивление материалов (Феодосьев В.И.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

В2. Реальный объект и расчетная схема

В сопротивлении материалов, как и во всех естественных науках, исследование реального объекта следует начинать с выбора расчетной схемы.

Приступая к расчету проектируемой конструкции, обоснованию ее расчетной схемы и соответствующей ей математической модели, следует прежде всего установить, что в данном

случае существенно и что несущественно; провести схематизацию объекта и отбросить все факторы, которые не могут сколько-нибудь заметным образом повлиять на суть задачи. Такого рода упрощение задачи во всех случаях совершенно необходимо, так как решение с полным учетом всех свойств реального объекта является принципиально невозможным вследствие их очевидной неисчерпаемости.

Если, например, требуется провести расчет на прочность троса подъемника (рис. В1), то в первую очередь надо учесть вес поднимаемого груза, ускорение, с которым он движется, а при большой высоте подъема, возможно, также и вес самого троса. В то же время заведомо надо отбросить влияние таких несущественных факторов, как аэродинамическое сопротивление, возникающее при подъеме клети, изменение температуры и барометрического давления с высотой и множество других.

Реальный объект, освобожденный от несущественных особенностей, носит название расчетной схемы. Для одного и того же объекта может быть предложено несколько расчетных схем в зависимости от требуемой точности и того, что интересует исследователя в данном конкретном случае. Так, если в упомянутом выше примере расчета нужно оценить только прочность троса подъемника, то клеть и груз допустимо рассматривать как жесткое целое и свести их действие на трос к силе, приложенной к концу троса (см. рис. В1). Если же необходимо решить вопрос о прочности самой клети, то последнюю уже нельзя считать абсолютно твердым телом. Ее конструктивные особенности надо рассматривать отдельно и в соответствии с ними выбирать для нее расчетную схему.

Рис. В1

Как для одного объекта может быть предложено несколько расчетных схем, так и одной расчетной схеме могут соответствовать различные реальные объекты. Последнее обстоятельство является весьма важным, так как, исследуя некоторую схему, можно получить решение целого класса реальных задач, сводящихся к данной схеме.

Построение расчетной схемы следует начинать со схематизации структуры и свойств материала. Общепринято рассматривать все материалы как сплошную среду, независимо от особенностей молекулярного строения вещества. Такое упрощение совершенно естественно, поскольку размеры рассматриваемых в сопротивлении материалов объектов несопоставимо больше характерных размеров межатомных расстояний. Схема сплошной среды позволяет использовать анализ бесконечно малых величин. Она весьма универсальна, поэтому ее принимают в качестве основополагающей не только в сопротивлении материалов, но и в теории упругости, пластичности, в гидро- и газодинамике. Этот цикл дисциплин поэтому и носит обобщенное название механики сплошной среды.

Схематизацию свойств материала проводят и дальше. Среду предполагают не только сплошной, но и однородной. Металлы имеют поликристаллическую структуру, т.е. состоят из множества хаотически расположенных кристаллов. И тем не менее мы рассматриваем их как однородные.

При выборе расчетной схемы сплошную среду наделяют свойствами, отвечающими основным свойствам реального материала. Например, под действием внешних сил реальное тело меняет свои геометрические размеры. После снятия внешних сил геометрические размеры тела полностью или частично восстанавливаются. Свойство тела восстанавливать свои первоначальные размеры называется упругостью. При решении большей части задач в сопротивлении материалов среду считают совершенно упругой. В действительности реальное тело в какой-то степени обнаруживает отступление от свойств совершенной упругости. При больших нагрузках это отступление становится настолько существенным, что в расчетной схеме сплошную среду наделяют уже другими свойствами, соответствующими новому характеру деформирования реального тела.

Обычно сплошную среду принимают изотропной, т.е. предполагают, что свойства образца, выделенного из сплошной среды, не зависят от его исходной угловой ориентации.

Отдельно взятый кристалл металла анизотропен. Но если в объеме содержится весьма большое количество хаотически расположенных кристалликов, то материал в целом можно рассматривать как изотропный. Поэтому обычно предполагают, что металлы в той мере, в какой с ними приходится иметь дело в инженерной практике, изотропны. Встречаются и анизотропные материалы. Анизотропна, например, бумага: полоски, вырезанные из листа бумаги в двух взаимно перпендикулярных направления, обладают различной прочностью. Существует анизотропия тел, связанная с их конструктивными особенностями. Так, анизотропна фанера, анизотропны ткани. В настоящее время широкое распространение получили композиционные материалы.

При выборе и обосновании математической модели проектируемой конструкции очень часто элементы, из которых она состоит, например упругие элементы приборов, элементы корпуса ракеты, самолета или корабля и т.д., расматривают как стержни, пластины и оболочки. Эти три элемента имеют самое широкое распространение в инженерной практике при проектировании новой техники практически во всех отраслях промышленности. К тому же они являются наиболее простыми и наглядными для иллюстрации понятий и методов новой для студентов дисциплины, относящейся к механике сплошной среды.

Самой простой математической моделью реальных конструкций является стержень, поэтому, как правило, изложение курса сопротивления материалов начинают с изучения основ механики стержней. Под стержнем понимается тело, одно из измерений которого - длина осевой линии, показанной на рис. В2 штрихпунктирной линией, - больше двух других, характеризующих поперечное сечение стержня (на рис. В2 заштриховано). Сечение стержня может быть как постоянным, так и переменным.

На рис. ВЗ показана модель высотного здания, которое, например, при расчете на ветровую нагрузку (и при определении частот и форм колебаний) можно рассматривать как

Рис. В2

Рис. В3

Рис. В4

прямолинейный стержень переменного поперечного сечения. Поток воздуха приводит к появлению аэродинамических сил, действующих на стержень. На участках I и III возникают распределенные аэродинамические силы да, на участке II, где имеется сосредоточенная масса М, появляется сосредоточенная аэродинамическая сила

Кроме того, стержневая модель высотного здания позволяет рассчитать (при конструкцию и на распределенные ( и др.), и на сосредоточенные ( и др.) нагрузки, т.е. количественно оценить работоспособность конструкции. В гл. 13 будет показано, что осевые (сжимающие) нагрузки могут привести к весьма неприятному явлению - потере устойчивости.

На рис. приведена спиральная пружина, широко используемая в различных приборах, которую при расчетах

Рис. В5

Рис. В6

рассматривают как плоский криволинейный стержень. Спиральная пружина нагружена сосредоточенным моментом На рис. В5 изображено сверло (прямолинейный стержень), которое при сверлении нагружается сжимающими силами Р и крутящим моментом Стержневая модель крыла самолета или лопатки двигателя (рис. В6) является упрощенной моделью реального крыла, однако позволяет определить критическую скорость полета, при превышении которой начинаются нарастающие поперечные колебания крыла - флаттер - одно из самых опасных явлений, ставших причиной многих катастроф.

На рис. В7 показан гибкий стержень (вал), находящийся в жестком канале, осевая линия которого, в общем случае, может быть пространственно-криволинейной. Вал предназначен для передачи крутящего момента от точки 0 (вход) к точке К (выход). Подобные стержневые элементы конструкции используют в роботах и манипуляторах в производстве, имеющем дело с радиогьктивными веществами.

Рис. В7

Очень широкое распространение в технике (системы амортизации и виброзащиты) имеют различного типа пружины, в том числе, цилиндрические (рис. В8, а) и фасонные (рис. В8, б), математической моделью которых является пространственно-криволинейный стержень.

Рис. В8

Различного типа трубопроводы и шланги (рис. В9), предназначенные для транспортировки жидкостей, рассчитывают с использованием модели стержня.

Рис. В9

Элементы конструкций, которые рассчитывают с использованием математических моделей пластин и оболочек, рассмотрены в гл. 10.

Математическая модель включает силы, которые действуют на конструкцию; их особенности и характер поведения при нагружении. Условно все нагрузки, действующие на реальные конструкции, можно разделить на детерминированные, о которых все известно, и случайные, поведение которых непредсказуемо.

В курсе сопротивления материалов, также как и в курсе теоретической механики, рассматривают детерминированные нагрузки. Методы учета случайных нагрузок, действующих на конструкции, изучают в курсах статистической механики и теории надежности.

Рис. В10

В качестве примера на рис. В10 показано действие случайных сил на автомобиль, движущийся по дороге с неровностями (к сожалению, очень распространенный случай). В результате возникают случайные колебания подвесок, что может привести к усталостному разрушению (более подробно об этом см. в гл. 12).

1
Оглавление
email@scask.ru