Главная > Сопротивление материалов (Феодосьев В.И.)
НАПИШУ ВСЁ ЧТО ЗАДАЛИ
СЕКРЕТНЫЙ БОТ В ТЕЛЕГЕ
<< Предыдущий параграф Следующий параграф >>
Пред.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
След.
Макеты страниц

Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше

Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике

ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO

Глава 5. ПЕРЕМЕЩЕНИЯ В СТЕРЖНЕВОЙ СИСТЕМЕ ПРИ ПРОИЗВОЛЬНОЙ НАГРУЗКЕ

5.1. Потенциальная энергия стержня в общем случае нагружения

Выше определялись перемещения прямого стержня при растяжении, кручении и изгибе. Рассмотрим теперь общий случай нагружения, когда в поперечных сечениях могут возникать нормальные и поперечные силы, изгибающие и крутящие моменты одновременно. Кроме того, расширим круг рассматриваемых вопросов, полагая, что стержень может быть не только прямым, но и криволинейным или состоять из ряда участков, образующих плоскую или пространственную систему.

Решение поставленной задачи необходимо не только для нахождения самих перемещений и оценки жесткости конструкции. На основе определения перемещений созданы общие методы определения внутренних силовых факторов в статически неопределимых системах, о чем будет сказано в следующей главе.

Наиболее просто перемещения можно найти при помощи энергетических соотношений на основе общего выражения потенциальной энергии нагруженного стержня.

Определению потенциальной энергии предшествует анализ внутренних силовых факторов, возникающих в стержне. Этот анализ проводят, как известно, при помощи метода сечений с построением эпюр изгибающих и крутящих моментов, а в тех случаях, когда это необходимо, - также эпюр нормальных и поперечных сил.

Во всех случаях эпюры внутренних силовых факторов строят на осевой линии стержня. Силовой фактор откладывают по нормали к оси, как это показано, например, на рис. 5.1. Для пространственного стержня осевую линию вычерчивают обычно в перспективе, а эпюры изгибающих моментов изображают в соответствующих плоскостях изгиба (рис. 5.2). Эпюру крутящих моментов не связывают с какой-либо определенной плоскостью и в отличие от эпюры изгибающих моментов штрихуют винтовой линией.

Рис. 5.1

Рис. 5.2

Для определения потенциальной энергии выделим из стержня элементарный участок длиной (рис. 5.3). Стержень может быть не только прямым, но и иметь малую начальную кривизну. В каждом из поперечных сечений в общем случае нагружения возникает шесть силовых факторов: три момента и три силы. По отношению к выделенному элементарному участку рассмотрим эти силовые факторы как внешние и определим работу, которая совершается ими при деформировании элемента. Эта работа переходит в потенциальную энергию, накопленную в элементарном участке стержня.

Рис. 5.3

Левое сечение элемента (см. рис. 5.3) условно будем рассматривать как неподвижное, с тем чтобы работа всех силовых факторов, приложенных к левому торцу, была равна нулю. Точка приведения сил в правом сечении вследствие деформации элемента получает некоторые малые перемещения, на которых совершается искомая работа. Очень важно, что каждому из шести силовых факторов соответствуют такие перемещения, на которых ни один из остальных пяти работы не совершает. Так, под действием момента возникает угол поворота сечения относительно оси На этом угловом перемещении работа совершается только этим моментом Линейное перемещение вдоль оси у возникает вследствие действия силы и только эта сила совершает работу на этом перемещении. Следовательно, потенциальную энергию элемента можно рассматривать как сумму независимых работ каждого из шести силовых факторов, т. е., иначе говоря, как сумму

энергий кручения, изгиба, растяжения и сдвига:

Естественно, такое разделение работ возможно лишь при определенном выборе осей. В частности, точка приведения сил должна совпадать с центром тяжести сечения. Иначе нормальная сила вызовет поворот сечения, и изгибающие моменты совершат работу на угловом перемещении, вызванном этой силой. Оси х и у должны быть главными. В противном случае момент вызовет поворот сечения относительно оси у, и будет произведена взаимная работа на угловых перемещениях, вызванных двумя изгибающими моментами.

Выражения для первых четырех слагаемых нам уже известны:

Остается найти энергию сдвига .

Рис. 5.4

Для определения рассмотрим элементарную призму с площадью основания и длиной (рис. 5.4). Энергия, заключенная в этом объеме, равна где - удельная потенциальная энергия при сдвиге. Согласно выражению

Таким образом, Интегрируя по площади находим . Но, согласно формуле Журавского (см. § 4.3), Следовательно,

Обозначим

Тогда

Аналогично получим

Рис. 5.5

Коэффициенты представляют собой безразмерные величины, зависящие от геометрической формы сечения. Например, для прямоугольного сечения с размерами (рис. 5.5) статический момент заштрихованной площади относительно оси х равен . Далее Производя преобразования, по формуле (5.2) получаем Для сплошного круглого сечения Для тонкостенного кругового профиля

Выражение (5.1) теперь принимает вид

Чтобы получить потенциальную энергию всего стержня, это выражение следует проинтегрировать по длине:

Если конструкция сложная и состоит из нескольких элементов, имеющих форму стержня, то после интегрирования в пределах каждого стержня должно быть произведено суммирование энергии по числу составляющих элементов.

В выражении (5.3) не всегда все слагаемые являются равноценными. Для подавляющего большинства встречающихся на практике систем, где составляющие элементы работают на изгиб или кручение, три последних слагаемых в выражении (5.3) оказываются существенно меньшими трех первых. Иначе говоря, энергия растяжения и сдвига, как правило, существенно меньше энергии изгиба и кручения.

Рис. 5.6

Вместе с тем возможны такие случаи, в которых рассматриваемые слагаемые оказываются величинами одного порядка. Например, для нецентрально-растянутого стержня, показанного на рис. 5.6, энергия растяжения и энергия изгиба являются

Рис. 5.7

величинами одного порядка. При нагружении пластины, склеенной из двух металлических листов с пенопластовым заполнителем (рис. 5.7), энергия сдвига в заполнителе может оказаться соизмеримой с энергией изгиба.

1
Оглавление
email@scask.ru