Пред.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 След.
Макеты страниц
Распознанный текст, спецсимволы и формулы могут содержать ошибки, поэтому с корректным вариантом рекомендуем ознакомиться на отсканированных изображениях учебника выше Также, советуем воспользоваться поиском по сайту, мы уверены, что вы сможете найти больше информации по нужной Вам тематике ДЛЯ СТУДЕНТОВ И ШКОЛЬНИКОВ ЕСТЬ
ZADANIA.TO
10.2. Определение напряжений в симметричных оболочках по беэмоментной теорииРассмотрим симметричную оболочку толщиной
Рис. 10.3 Двумя парами меридиональных и нормальных конических сечений (см. рис. 10.3, 6) выделим из оболочки элемент, представленный на рис. 10.4. Будем считать, что на гранях элемента возникают напряжения
Рис. 10.4 Так как
то в итоге имеем
Это соотношение известно под названием уравнения Лапласа. Для элемента, показанного на рис. 10.4, можно составить еще одно уравнение, проектируя все силы на направление оси оболочки. Удобнее это делать, однако, не для элемента, а для части оболочки, отсеченной коническим нормальным сечением (рис. 10.5). Обозначив через Р осевую равнодействующую внешних сил, получим
Отсюда легко найти меридиональное напряжение ат. Таким образом, согласно безмоментной теории, напряжения
Рис. 10.5 Третье главное напряжение - напряжение надавливания между слоями оболочки - предполагаем малым, и напряженное состояние оболочки считаем двухосным. Действительно, наибольшее значение радиального напряжения по абсолютной величине равно нормальному давлению Прежде чем перейти к конкретным примерам расчета с использованием безмоментной теории, докажем две следующие теоремы. Теорема 10.1. Если на какую-либо поверхность действует равномерно распределенное давление, то, независимо от формы поверхности, проекция равнодействующей сил давления на заданную ось равна произведению давления
Рис. 10.6 Положим, задана поверхность
где
Таким образом, для того чтобы определить проекцию равнодействующей сил давления на ось х, нужно предварительно спроектировать поверхность на плоскость X, а затем умножить давление на площадь этой проекции, что и требовалось доказать. Теорема 10.2. Если на какую-либо поверхность действует давление жидкости (рис. 10.7), то вертикальная составляющая сил давления равна весу жидкости в объеме, расположенном над поверхностью.
Рис. 10.7 Вертикальная составляющая сил давления для площадки Но Поясняя полученный результат, следует указать, что найденная сила не зависит от формы сосуда, удерживающего жидкость. Так, во всех трех случаях, представленных на рис. 10.8, сила, приходящаяся на дно сосуда, будет одной и той же,
Рис. 10.8 равной весу жидкости в объеме вышерасположенного цилиндра Рассмотрим некоторые примеры определения напряжений в тонкостенных сосудах. Пример 10.1. Сферическая оболочка радиусом
Рис. 10.9 Для сферической оболочки
Напряженное состояние является двухосным (рис. 10.9, б), поэтому
Наименьшее напряжение
Пример 10.2. Цилиндрический сосуд (рис. 10.10, а) находится под действием внутреннего давления
Рис. 10.10 Отсекаем поперечным сечением часть цилиндра (рис. 10.10, 6) и составляем для нее уравнение равновесия (10.2):
Осевая составляющая сил давления, независимо от формы днища, согласно теореме 10.1, будет равна
Для цилиндра
т.е. окружное напряжение оказывается вдвое большим меридионального. Элемент
Эквивалентное напряжение
Для цилиндра, как видим, эквивалентное напряжение оказывается в два раза большим, чем для сферической оболочки того же радиуса и той же толщины. Пример 10.3. Полусферический сосуд радиусом
Рис. 10.11 Нормальным коническим сечением с углом 2 при вершине отсекаем нижнюю часть сферической оболочки (рис. 10.11, б) и составляем для нее уравнение равновесия (10.2), где Р - равнодействующая сила давления жидкости. Согласно теореме 10.2, сила Р равна весу жидкости в объеме, расположенном выше отсеченной части оболочки. Введем вспомогательный угол
или
Таким образом, находим
Обращаемся теперь к уравнению Лапласа (10.1):
Подставляя от, находим из этого уравнения
Согласно выражениям (10.5) и (10.6), строим эпюры Эпюра эквивалентного напряжения (см. рис. 10.12) имеет, таким образом, излом в точке, где
где по-прежнему
Рис. 10.12 Наличие в верхней части сосуда напряжений сжатия Меридиональное напряжение
Рис. 10.13
Рис. 10.14 Возникновение сжимающих напряжений Пример 10.4. Определить напряжения в торообразном баллоне, нагруженном внутренним давлением Выделим сечениями, нормальными к поверхности, часть торообразной оболочки (рис. 10.15, 6). Составим для нее уравнение равновесия и определим
Обращаясь к уравнению Лапласа (10.1), получаем
Подставляя
Рис. 10.15 Наибольшее напряжение
Так как напряжения
В частном случае, при
|
1 |
Оглавление
|